
Technische Universität Berlin

Fakultät I - Geisteswissenschaften
Fachgebiet Audiokommunikation

Audiokommunikation und -technologie M.Sc.

Self-Organizing Maps for

Sound Corpus Organization

Master's Thesis

Vorgelegt von: Jonas Margraf
Matrikelnummer: 372625
E-Mail: jonasmargraf@me.com

Erstgutachter: Prof. Dr. Stefan Weinzierl
Zweitgutachter: Dr. Diemo Schwarz
Datum: 1. April 2019

jonasmargraf@me.com

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie oh-
ne unerlaubte fremde Hilfe und ausschlieÿlich unter Verwendung der aufgeführten Quellen
und Hilfsmittel angefertigt habe.

Berlin, den 1. April 2019

. .
Jonas Margraf

Abstract

Large collections of audio �les � sound corpora � have never been more readily avail-
able. Sample libraries are easily accessible online and cheap storage media e�ectively
eradicate concerns of storage capacity for contemporary music producers. At the same
time, tools for navigating, searching and organizing these increasingly unmanageable au-
dio �le collections have not kept pace. At present, arguably the most common tool with
which producers search their sample libraries are �le browsers that simply present lists of
�le names in alphabetical order.

The present thesis approaches this problem from a practical perspective. We imple-
ment the Self-Organizing Map (SOM), an established machine learning algorithm for di-
mensionality reduction and data visualization, and apply it to sound corpus organization.
We present SOM Browser, a fast, visual interface for sample library exploration. It o�ers
an alternative to the established music production work�ow by incorporating the SOM
algorithm, which to our knowledge is not available in any commercial audio software. It is
a standalone application that organizes a collection of sound �les completely unsupervised
and presents a two-dimensional map of the sounds. The map forms an interactive grid
interface with which the user can audition �les in rapid succession. This allows for a quick
way to gain an overview of the analyzed sound corpus. To optimize the space alloted to
the map interface, we extend the SOM algorithm with a new method, which we call Forced
Node Population (FNP). FNP reduces unpopulated (�empty�) areas of the map at the cost
of some additional map distortion. Using a representative sample library of drum sounds,
we search for a set of optimal algorithm parameters according to objective measures of
map quality and produce a map for the chosen sound corpus. We then conduct a series
of qualitative interviews with audio professionals to gain some understanding of the com-
plex situation that is sample library interaction in a music production environment and
to gauge initial reactions to the alternative software we developed. Participants' responses
allow us to identify a prevalent method of working with sample libraries, which we codify
into a generalized model of the established work�ow. The results con�rm the need for and
interest in alternate interfaces. Although the organization of sounds in the map interface
is seen as not easily comprehensible, interview responses con�rm the need for and interest
in our software.

This work thus presents a functioning proof of principal for the use of SOMs for sound
corpus organization. It demonstrates that there is a high interest in such methods. Despite
interview participants' criticism of details, overall feedback is positive. Therefore, further
development of the presented work in close exchange with users appears to be very sensible.

Zusammenfassung

Umfangreiche Sammlungen von Audiodateien � Klangkorpora � sind so leicht zu-
gänglich wie nie zuvor. Online verfügbare Sample Libraries und kostengünstige Datenträger
haben Speicherplatz als Einschränkung für moderne Musikproduzenten e�ektiv beseitigt.
Zugleich hat jedoch das verfügbare Instrumentarium zur Navigation, Durchsuchung und
Organisation dieser zunehmend unüberschaubaren Datensammlungen nicht Schritt gehal-
ten. Das derzeit wohl gängigste Werkzeug, mit dem Produzenten ihre Sample Libraries
durchsuchen, sind Dateimanager, welche alphabetisch sortierte Listen von Dateinamen an-
zeigen.

Die vorliegende Masterarbeit geht dieses Problem praktisch an. Wir implementieren
die Self-Organizing Map (SOM), einen bewährten Algorithmus des maschinellen Lernens
zur Dimensionsreduktion und Datenvisualisierung, und verwenden diese zur Organisation
von Klangkorpora. Wir präsentieren SOM Browser, ein Programm mit einer schnellen, vi-
suellen Bedienober�äche zur Erkundung von Sample Libraries. Es bietet eine Alternative
zum etablierten Musikproduktionsprozess, da es den SOM Algorithmus integriert, wel-
cher nach unserem Wissen in keiner kommerziellen Audiosoftware zur Verfügung steht.
SOM Browser ist eine Standalone-Anwendung, welche einen Klangkorpus komplett un-
überwacht organisiert und eine zweidimensionale Karte der Klänge in einer interaktiven,
rasterbasierten Ober�äche präsentiert. Damit können Klangdateien in schneller Abfolge
angespielt werden, was es ermöglicht, rasch einen Überblick der analysierten Dateien zu
bekommen. Um den von der Karte eingenommenen Platz zu optimieren, erweitern wir den
SOM Algorithmus mit einer neuen Methode, welche wir Forced Node Population (FNP)
nennen. FNP reduziert unbesiedelte (�leere�) Bereiche der Karte auf Kosten zusätzlicher
Verzerrung. Unter Verwendung einer repräsentativen Sample Library von Schlagzeug- und
Perkussionsklängen suchen wir nach einer Reihe von optimalen Parametern des Algorith-
mus gemäÿ objektiver Maÿe für die Qualität der SOM und erzeugen eine Karte für den
gewählten Klangkorpus. Danach führen wir qualitative Interviews mit fünf professionellen
Produzenten und Künstlern, um ein besseres Verständnis der Komplexität der Interaktion
mit Sample Libraries zu gewinnen und um erste Reaktionen auf die von uns entwickelte
Softwarealternative zu erfassen. Basierend auf Antworten der Befragten identi�zieren wir
einen typischen Umgang mit Sample Libraries, kodi�zieren diesen und erstellen ein gene-
ralisiertes Modell der etablierten Arbeitsmethode. Obwohl die Organisation der Klänge in
unserer Bedienober�äche als nicht leicht nachvollziehbar eingeschätzt wird, bestätigen die
erfassten Antworten Bedarf und Interesse an unserer Software.

Diese Arbeit legt somit einen funktionierenden Proof of Principal für die Verwendung
von SOMs zur Organisation von Klangkorpora vor. Sie zeigt gleichzeitig, dass ein hohes
Interesse an solchen Methoden besteht. Trotz Detailkritik der Befragten ist das Feedback
von Nutzerseite positiv, sodass die Weiterentwicklung der präsentierten Arbeit in engem
Austausch mit Nutzern sehr sinnvoll erscheint.

Acknowledgements

I would like to express my gratitude to the advisors of this thesis, Prof. Dr. Stefan
Weinzierl and Dr. Diemo Schwarz for supporting my work. I am particularly grateful to
Diemo Schwarz for allowing me to work with him at IRCAM, where the idea for all of this
was born.

I would also like to extend my thanks to Dr. Jochen Ste�ens for his help in looking over
my interview design and to Henrik von Coler for many helpful conversations and tips on
how to navigate the process of writing this thesis.

Additionally, I wish to thank Jelle Akkerman for letting me bug him about software archi-
tecture and sharing his coding expertise.

None of this would have been possible without my parents and their continuous support,
even though �nishing this degree has taken a bit of time. I am deeply grateful to you.

Thank you also to my sister Lena, for your empathy as you share my scholastic woes.

Finally, Audri, thank you for always being there. Here's to whatever comes next.

Contents

1 Introduction 1

1.1 Motivation and Problem Description . 1
1.2 Previous Work . 2
1.3 Aims and Objectives . 3

2 Background 4

2.1 Audio Feature Extraction . 4
2.1.1 Audio Pre-Processing . 4
2.1.2 Time Domain Features . 5
2.1.3 Frequency Domain Features . 5
2.1.4 Perceptual Features . 7

2.2 Self-Organizing Map . 7
2.2.1 Algorithm De�nition . 8
2.2.2 Node Initialization . 8
2.2.3 Input Data Scaling . 9
2.2.4 Alternative Learning Rate Factors 9

3 Implementation 10

3.1 Groundwork: CataRT Extension . 10
3.1.1 Functionality . 12
3.1.2 Code Overview . 12

3.2 SOM Browser . 15
3.2.1 Functionality . 15
3.2.2 Libraries and Frameworks Used . 17
3.2.3 Application Structure . 18
3.2.4 Background Processing . 19
3.2.5 User Interface Components . 20
3.2.6 Algorithm Extension: Forced Node Population 22

4 Evaluation 24

4.1 Sound Corpus Selection . 24
4.2 Metrics for SOM Analysis . 25

4.2.1 SOM-Induced Quantization . 26
4.2.2 Vector-Node Count . 26
4.2.3 Map Emptiness . 26
4.2.4 In�uence of Forced Node Population 27

4.3 Semi-structured User Interviews . 27
4.3.1 Motivation to Conduct Interviews 27
4.3.2 Interview Subject Selection . 28
4.3.3 Informed Consent Form . 28
4.3.4 Test Subject Code Design . 28
4.3.5 Interview Structure . 28
4.3.6 Question Design . 29
4.3.7 Selection of Ratings Scales . 29
4.3.8 Questions Used . 29

5 Results 31

5.1 SOM Metrics . 31
5.1.1 E�ects of Training Duration . 31
5.1.2 E�ects of αinitial . 31
5.1.3 E�ects of Radius Size . 33
5.1.4 Learning Rate Type Comparison . 33
5.1.5 Final Map and In�uence of Forced Node Population (FNP) 35

5.2 Interview Results . 37
5.2.1 Established Work�ow Responses . 38
5.2.2 SOM Browser Responses . 39
5.2.3 Work�ow Comparison: SOM Browser vs. Established Work�ow . . . 42
5.2.4 SOM Browser: Feature Requests . 42

6 Discussion 44

6.1 Interpreting the Results . 44
6.2 Strengths, Weaknesses and Limitations . 46
6.3 Outlook . 47
6.4 Conclusion . 47

7 References 49

Appendices I

A Source Code I

B Sample Library I

C Evaluation Map Data I

D Interview Data I

E MATLAB Figures I

Acronyms II

List of Figures III

List of Listings IV

List of Tables V

Introduction

1 Introduction

1.1 Motivation and Problem Description

Sample libraries are ubiquitous in modern audio production. A�ordable storage media and
fast computers enable artists, producers and sound designers to work with large collections
of audio �les - a one terabyte hard drive costs around 50 Euros and can store up to two
months of uncompressed audio information in CD quality. At the same time, the Internet is
full of large sound corpora for anyone to download. This is especially true for collections of
drum sounds, which are o�ered for sale by many companies or traded (sometimes without
considerations for any applicable copyright) on various web forums. Consequently, many
users of digital audio software amass vast collections of these �sample packs�, often without
ever listening to or being familiar with all of their contents, as they encounter the paradox
of choice (Schwartz, 2004). The technological development enabling this abundance of
sound samples also presents new and serious challenges to the e�cient use of them: how
can such large numbers of �les be searched, organized, compared, and presented to the
user?

The present thesis explores a practical approach to the problem of sound corpus orga-
nization, while focussing primarily on drum samples as used by electronic music producers.
Sound corpus in this work denotes a collection of sound �les � other commonly encoun-
tered terms for such collections are sample library, pack, kit or bundle. Currently, arguably
the most common way in which producers search through their sample libraries is by using
some kind of �le browser (built into their computer's Operating System (OS) or their Dig-
ital Audio Workstation (DAW) of choice). This browser presents a list view of all audio
�les in the current folder and is typically sorted alphabetically, chronologically or by some
other criterion that is almost de�nitely not directly related to the sonic content of the �le.

At the same time, advances in the �eld of Music Information Retrieval (MIR) have
enabled researchers and developers to extract descriptive information about the contents
of a digital audio �le for decades now, making it possible to present much more relevant
data to software users. Commercial software tools incorporating Audio Content Analysis
(ACA) are slowly becoming available (see Section 1.2 below). Still, the problem of data
visualization persists - how can all these additional dimensions of information be displayed
in a way that improves users' work�ows?

In order to �nd an alternative organizational method to the name-based, categorical
�le browser interface described above, we turn to Machine Learning (ML), a �eld that
deals with pattern recognition and classi�cation tasks. The Self-Organizing Map (SOM)
algorithm, �rst introduced by Teuvo Kohonen (see Section 2.2, Kohonen (1990)), is a
machine learning algorithm that performs dimensionality reduction on a set of higher-
dimensional input data and can at the same time be used for data visualization, as its
output is often two-dimensional and can be shown as a regular grid structure. Besides
being an established algorithm that has been extensively evaluated and used in various
applications (see for example Kohonen (1990, p.1476) for an overview), it o�ers a number
of further advantages that informed our decision to employ it in this work. It can visualize
high-dimensional data sets, while training itself completely unsupervised. It can organize
unnamed audio �les, meaning it can o�er up some proposal for a structure without any
metadata. Lastly, the SOM is based on a grid layout, which is an in�uential, common

1

Introduction

structure in electronic music hardware and music technology in general - grids are ever-
present in electronic music studios (Adeney and Brown, 2009).

1.2 Previous Work

The topic of using audio descriptors (see Section 2.1 for further details) for the organization
of sounds in two-dimensional interfaces, often displayed as scatter plots, has been explored
in a variety of previous research. Particularly relevant for the present work is the software
CataRT by Schwarz et al. (2006). It allows realtime corpus-based concatenative synthesis
and o�ers the user an interface to explore the loaded sound corpus interactively. Two
selectable audio descriptors make up the axes along which sounds are plotted as circles,
while two more descriptors can be mapped to circle color and size. At the same time, more
descriptors are already calculated, but cannot be displayed simultaneously, which informs
our decision to extend CataRT with the option of using a two-dimensional SOM as the
interface.

Coleman (2007) also uses feature extraction to create a scatter plot interface of a
personal sample library, which directly relates to our use case as described in Section 1.1
above. The author also implements a way to �lter samples by feature values using dynamic
queries through realtime interaction with user interface elements such as sliders and check
boxes.

An early example of using SOMs for audio data is Cosi et al. (1994), who use the
algorithm to classify classical musical instruments. They are able to distinguish between
twelve instrumental timbres and also show that new timbres not used during training can
be classi�ed by the map, which will place the unknown timbre close to the most similar
training timbre.

Dealing explicitly with drum samples, Pampalk et al. (2004) use a combination of one-
and two-dimensional SOMs. The one-dimensional variant of the algorithm is used to create
a hierarchical sample structure, while a two-dimensional SOM is used for visualization of
the samples.

Heise et al. (2008) combine a SOM-based interface with surround sound reproduction
for an interesting and novel approach to sound corpus exploration with their SoundTorch
software. The authors let the user carry the eponymous SoundTorch, which is used to
illuminate parts of a map interface onto which sounds are placed. Illuminated sounds are
played back on a multichannel loudspeaker system, with their position in the interface
determining their spatial playback position.

Fried et al. (2014) are employing a di�erent approach to visualization and dimensional-
ity reduction of high-dimensional descriptor spaces with their AudioQuilt software, which
relies on user input for its similarity measure. Their approach achieves a 1-to-1 map-
ping between sound samples and grid locations at the cost of not functioning completely
unsupervised.

Finally, we can also give a couple of examples of relevant software that exist outside
of academia. The In�nite Drum Machine by McDonald and Tan (2019) uses the t-SNE
algorithm (Maaten and Hinton, 2008) to create a drum machine with a two-dimensional
sound selection interface that resembles a point cloud. A commercial software tool for
organizing and maintaining sound corpora that has been around for several years now is
Audio Finder (Iced Audio, 2019), which does not employ machine learning at all, instead

2

Introduction

o�ering a large variety of metadata and cataloging tools, as well as some spectral analysis
features. More recently, commercially available audio software that incorporates machine
learning is starting to appear. Two examples of this are Sononym (Nielsen, 2019) and
Atlas (Algonaut, 2019). Similarly to Audio Finder, Sononym deals with sample library
organization and o�ers a ML-based �similarity search�, while Atlas is a drum sampler
plug-in that also features a sound map.

1.3 Aims and Objectives

The aim of this thesis is to implement the SOM algorithm from scratch and use it to build
a software interface for sound corpus organization and exploration, as there is currently
no readily available audio software with this functionality. To this end, we incorporate
the algorithm into CataRT, an existing software for corpus-based concatenative synthesis
(CBCS) (Schwarz et al., 2006). We also develop a larger standalone application called SOM
Browser that uses the SOM as an alternative interface for the exploration of a folder of
samples, as this is something that no commercially available software o�ers. Subsequently,
an overview of the e�ects of the di�erent controllable parameters of the algorithm on the
produced SOM is given and an ideal map for a representative sound corpus of drum samples
is shown. Finally, we present user feedback to SOM Browser gathered from interviews
with �ve audio professionals. The main question we aim to explore during these interviews
is whether our software can o�er a viable alternative to established work�ows or if our
proposed alternative interface is perhaps too abstract to be considered useful.

3

Background

2 Background

The following chapter intends to provide a methodological background for two key concepts
underlying the work presented in this thesis, namely Audio Feature Extraction and the
Self-Organizing Map.

2.1 Audio Feature Extraction

Audio Feature Extraction is the process of deriving features from a digital audio signal. A
feature represents some sort of descriptive information about the audio data. According
to Lerch (2012), this extraction process serves a dual purpose; that of dimensionality
reduction as well as a more meaningful representation. A large variety of features for
di�erent purposes have been developed (refer to Peeters (2004) for an extensive list, as well
as Lerch (2012) for an in-depth look at the topic). The following subsections introduce the
features used in this work, starting with the pre-processing required to prepare an audio
signal for feature extraction and then moving into individual de�nitions for each feature.
The equations presented here are based on the formal de�nitions given by Lerch (2012)
along with the computational implementations of the features in the Meyda library for
feature extraction in JavaScript (Rawlinson et al., 2015), which in turn adapted the yaafe
library for Python (Mathieu et al., 2010).

2.1.1 Audio Pre-Processing

Consider a digital audio signal of the form x[n], where n denotes the sample index and
x[n] the value of the individual sample at that index.

Normalization In order to have a standardized maximum amplitude of 1 across all
audio signals, they are normalized such that

xnorm[n] =
x[n]

maxx[n]
. (1)

Mono Conversion Spatial information, as contained in an audio �le with more than
one channel, is not deemed necessary in the presented work. For this reason, all audio
signals are converted to mono by taking the average of all channels.

Frame-Based Feature Extraction Rather than performing feature extraction on the
entirety of the audio signal, it is common practice to divide the signal into smaller chunks
or frames, typically consisting of some 2n samples (512, 1024, 2048 are often found values).
The resulting feature values for each frame form a trajectory of the feature's evolution over
time, which can either be used as such or can be averaged. In this work, audio signals are
divided into frames with a length of 512 samples. In order to avoid computational errors
(such as Not a Number (NaN) in JavaScript) during potentially silent portions of the audio
signal, frames with vRMS < −60 dBFS (see Root Mean Square (RMS) de�nition below)
are omitted from the feature extraction. The following equations de�ne each feature for a
single frame.

4

Background

2.1.2 Time Domain Features

Time domain features are features derived directly from the discrete-time signal x[n].

Duration The overall duration of the signal x[n] in seconds:

vDUR =
n

fs
s, (2)

where n is the number of samples and fs is the sampling rate.

Root Mean Square (RMS) measures the power of a signal (Lerch, 2012, p.73f). It de-
scribes sound intensity and is sometimes used as a simple measure for loudness (Rawlinson
et al., 2019a) that does not take the nonlinearity of human hearing into account (Fletcher
and Munson, 1933). It is calculated for an audio frame x[n] consisting of n samples such
that

vRMS =

√√√√√ n∑
i=1

x(i)2

n
. (3)

Zero-Crossing Rate (ZCR) represents the rate of the number of sign changes in a
signal. It can be used as a measure of the tonalness of a sound (Lykartsis, 2014) and as a
simple pitch detection method for monophonic signals (de la Cuadra, 2019). It is de�ned
as

vZCR =
1

2 · n

n∑
i=1

|sgn[x(i)]− sgn[x(i− 1)]|. (4)

2.1.3 Frequency Domain Features

Frequency domain features or spectral features are derived from the discrete complex spec-
trum X(k), where k refers to the frequency bin number. X(k) is calculated from x[n]
by performing a Fast Fourier Transform (FFT) (for information on the Fourier transform,
refer to any signal processing textbook, such as Oppenheim and Schafer (2014)).

Spectral Centroid is a measure of the center of gravity of a spectrum. A higher value
indicates a brighter, sharper sound (Lerch, 2012). The spectral centroid is de�ned as

vSC =

NFFT /2−1∑
k=0

k · |X(k)|2

NFFT /2−1∑
k=0

|X(k)|2
. (5)

Spectral Flatness is a measure for the tonality or noisiness of a signal, de�ned as the
ratio of the geometric and arithmetic means of its magnitude spectrum. Higher values

5

Background

indicate a �atter (and therefore noisier) spectrum, whereas lower values point towards
more tonal spectral content. It is de�ned as

vSFL =

NFFT /2

√
NFFT /2−1∏

k=0

|X(k)|

(2/NFFT) ·
NFFT /2−1∑

k=0

|X(k)|
. (6)

Spectral Kurtosis indicates whether a given magnitude spectrum's distribution is sim-
ilar to a Gaussian distribution. Negative values result from a �atter distribution, whereas
positive values indicate a peakier distribution. A Gaussian distribution would result in a
value of 0. Spectral Kurtosis is de�ned as

vSKU =

2
NFFT /2−1∑

k=0

(|X(k)| − µ|X|)4

NFFT · σ4|X|
− 3, (7)

where µ|X| represents the mean and σ|X| the standard deviation of the magnitude
spectrum |X|.

Spectral Skewness assesses the symmetry of a magnitude spectrum distribution. It is
de�ned as

vSSK =

2
NFFT /2−1∑

k=0

(|X(k)| − µ|X|)3

NFFT · σ3|X|
. (8)

Spectral Slope represents a measure of how sloped or inclined a given spectral distribu-
tion is. The spectral slope is calculated using a linear regression of the magnitude spectrum
such that

vSSL =

NFFT /2−1∑
k=0

(k − µk)(|X(k)| − µ|X|)

NFFT /2−1∑
k=0

(k − µk)2
. (9)

Spectral Spread is a descriptor of the concentration of a magnitude spectrum around
the Spectral Centroid and assesses the corresponding signal's bandwidth. It is de�ned as

vSSP =

NFFT /2−1∑
k=0

(k − vSC)2 · |X(k)|2

NFFT /2−1∑
k=0

|X(k)|2
. (10)

6

Background

Spectral Rollo� measures the bandwidth of a given signal by calculating that frequency
bin below which lie κ percent of the sum of magnitudes of X(k). Common values for κ are
0.85, 0.95 (Lerch, 2012) or 0.99 (Rawlinson et al., 2019a). It is de�ned as

vSR = i

∣∣∣∣∣ i∑
k=0
|X(k)|=κ·

NFFT /2−1∑
k=0

|X(k)|

. (11)

2.1.4 Perceptual Features

Both the time and frequency domain features introduced above are derived from raw audio
samples without taking into account any concept of human sound perception. Perceptual
features incorporate some sort of model that approximates this perception. While only a
single perceptual feature is used in this work, more do exist (see Peeters (2004) for a list
of some of them).

Total Loudness represents an algorithmic approximation of the human perception of a
signal's loudness based on Moore et al. (1997), which uses the Bark scale as introduced
by Zwicker (1961). The Total Loudness is the sum of all 24 bands' speci�c loudness
coe�cients, de�ned by Peeters (2004) as

vTL =

24∑
i=1

vSL(i), (12)

where
vSL(i) = E(i)0.23 (13)

is the speci�c loudness of each Bark band (see Moore et al. (1997) for further details).

2.2 Self-Organizing Map

The self-organizing map (SOM) is a machine learning algorithm for dimensionality reduc-
tion, visualization and analysis of higher-dimensional data. Sometimes also referred to as
Kohonen map or network, it was introduced in 1981 by Teuvo Kohonen (Kohonen, 1990).
The SOM is a variant of an arti�cial neural network that uses an unsupervised, competitive
learning process to map a set of higher-dimensional observations (the input vectors) onto
a regular, often two-dimensional grid or map of neurons or nodes that is easy to visualize.
The SOM can be regarded as a nonlinear generalization of a principal component analysis
(PCA) (Yin, 2007) or as a quantization of the input data, with the nodes along the map
functioning as pointers into that higher-dimensional space. Each node has a position on
the lower-dimensional grid as well as an associated position in the input space, which takes
the form of a n-dimensional weight vector m = [m1, . . . ,mn], where n is the number of di-
mensions of the input vectors. Nodes that are in close proximity to each other on the SOM
will also have similar weight vectors (Vesanto et al., 2000), although the inverse (neighbor-
ing positions in the input space also mapping to neighboring nodes) is not necessarily true
(Bauer et al., 1996).
For an in-depth look at the algorithm, its variants and applications, as well as an extensive
survey of research on SOMs, the avid reader is referred to Kohonen (2001).

7

Background

2.2.1 Algorithm De�nition

The following de�nition is based on Kohonen (1990), Kohonen (2005), Kohonen and
Honkela (2007) and Bauer et al. (1996).

Consider a space of input data in the form of n-dimensional vectors x ∈ Rn and an
ordered set of nodes or model vectors mi ∈ Rn. A vector x(t) is mapped to that node mc

with the shortest Euclidean distance from it:

||x(t)−mc|| ≤ ||x(t)−mi|| ∀i. (14)

This �winning� node mc is referred to as the Best Matching Unit (BMU) for x(t).

During the learning or adaptation phase of the algorithm, all nodes mi are adjusted by
a recursive regression process

mi(t+ 1) = mi(t) + hc(x),i(x(t)−mi(t)), (15)

where t is the index of the current regression step, x(t) is an input vector chosen randomly
from the input data at this step, c is the index of the BMU for the current input vector
x(t) according to Equation 14 and hc(x),i represents a so-called neighborhood function.
The name-giving neighborhood is a subset Nc of nodes centered on mc. At each learning
step t, those nodes that are within Nc will be adjusted, whereas those outside of it will
not. The reason for employing such a neighborhood function is so that the nodes �doing
the learning are not a�ected independently of each other� (Kohonen, 1990, p.1467) and
�the topography of the map is ensured� (Bauer et al., 1996, p.5). At its most basic, the
neighborhood function is a decreasing distance function between neurons mi and mc. Its
most common form, which is also employed in this work, is that of a Gaussian function
with its peak at mc such that

hc(x),i = α(t) exp

(
− ||ri − rc||

2

2σ2(t)

)
. (16)

Here, α denotes a learning rate factor or adaptation �gain control� 0 < α(t) < 1, which
decreases over the course of the regression, ri ∈ R2 and rc ∈ R2 are the locations of mi

and mc on the SOM grid (the lower-dimensional output map, not the input space!), and
σ(t) is the width of the neighborhood function, which again decreases as the regression
step index increases.

2.2.2 Node Initialization

Because of the iterative nature of the SOM algorithm, its outcome depends on the initial
positions chosen for the nodes. The method implemented in this work uses random initial-
ization, meaning the starting positions of the nodes are chosen randomly from within the
bounds of the input space. An often employed alternative approach is to �rst perform a
Principal Component Analysis (PCA) on the input data, select the largest d components,
where d is the number of desired output dimensions for the SOM, and then distribute the
nodes at equidistant intervals along those component vectors.

8

Background

2.2.3 Input Data Scaling

Some consideration should be given to the dynamic range of the input data across its
di�erent dimensions. Are the dimensional ranges comparable in their limits? What about
their variance? There does not appear to exist a clear consensus across the literature on
whether or not normalization of input data is strictly necessary (Vesanto et al. (2000, p.34),
Kohonen (1990, p.1470), Kohonen and Honkela (2007)).

Because the range of the data derived from the audio feature analysis used in this work
varies considerably between features, the data for feature n is rescaled to have unit variance
by dividing by the feature's standard deviation σn:

xn =
xn
σn
. (17)

2.2.4 Alternative Learning Rate Factors

Linear The traditional SOM algorithm uses a learning rate factor α that decreases lin-
early as a function of the regression step t:

α(t) = α0

(
1− t
T

)
, (18)

where α0 is the initially chosen learning rate and T is the total training length or number
of regression steps.

Two other approaches to the decreasing learning rate factor were implemented in this
work:

Inverse The �rst is a reciprocally decreasing function where

α(t) =
α0(

1+100t
T

) . (19)

Bauer-Der-Herrmann Algorithm (BDH) The second alternative approach is that
of an adaptive local learning rate as developed by Bauer et al. (1996) (referred to hereafter
as BDH, also see Merenyi et al. (2007)):

α(t) = α0

(
1

∆tc

(
1

|x(t)−mc|n

))m
, (20)

where ∆tc represents the time since the current BMU for the current input vector was last
selected as a BMU for any vector and m is a newly introduced, free control parameter. For
a more complete review of the uses of this algorithm, the reader is referred to the original
paper (Bauer et al., 1996) as well as Merenyi et al. (2007).

9

Implementation

3 Implementation

After some methodological background information was given in the previous chapter, the
following sections aim to explain how the SOM algorithm was implemented in JavaScript.
First, a smaller program was built to extend the existing software CataRT. Then a second,
more fully �edged application called SOM Browser was developed. For both of these
programs, we take a look at their functionality and features, give an overview of the code
and program structure, and explain some concepts and considerations that were important
for the development process.

3.1 Groundwork: CataRT Extension

Figure 1: mubu-SOM-js

For the purpose of laying the groundwork for a bigger standalone application (see
section 3.2), a proof-of-concept implementation of the core SOM algorithm was written
in JavaScript to serve as an extension to the MuBu For Max software package (Schnell

10

Implementation

et al., 2019a,b) for the visual programming language Max (Cycling '74, 2019). MuBu
For Max was developed by the Sound, Music, Movement, Interaction Team (ISMM) at
Institut de recherche et coordination acoustique/musique (IRCAM) (Schnell et al., 2009).
It contains the catart-by-mubu patch for realtime interactive corpus-based concatenative
synthesis based on the original CataRT software (Schwarz et al., 2006). The developed
extension is a Max patch called mubu-SOM-js (see Figure 1) and can be found as part of
the digital submission of this thesis in the directory dev/mubu-som-js.

(a) (b)

Figure 2: CataRT display of a corpus without SOM (2a, X axis shows spectral centroid, Y axis shows loudness)
and with SOM extension (2b). Each circle represents a sample.

Figure 3: CataRT display of a corpus with SOM extension and added noise to spatially di�erentiate samples assigned
to the same node. Each circle represents a sample.

Catart-by-mubu uses a two-dimensional scatter plot interface in which the user can se-
lect samples or grains from the loaded audio corpus (see Figure 2). The spatial position of
these sounds in the interface is determined by two audio features, representing the horizon-
tal and vertical axes, that can be selected by the user. The implemented SOM extension

11

Implementation

gives users the option to choose a two-dimensional SOM for the spatial organization of
the corpus. This augments the interface in three ways: all analyzed audio features can be
taken into account for the spatial positioning (as opposed to just two at a time), more of
the available interface space is used and additionally the sounds are spaced in a more even
fashion (see Figure 2).

3.1.1 Functionality

Mubu-SOM-js o�ers the user simple controls to in�uence the produced SOM. These can
be set by sending the messages outlined in Table 1 to the
[js descriptor_som.js] object.

Message Type Description Example

createSOM n/a Initiates SOM calculation. createSOM

setMapSize $1 $1 Float Sets size of map. setMapSize 7 7

trainingEpochs $1 Int De�nes the length of the
training in epochs. One epoch
corresponds to n iterations
of the training algorithm (see
section 2.2.1), where n is the
number of samples in the cor-
pus.

trainingEpochs 30

initialAlpha $1 Float Sets the starting value for the
learning rate factor α.

initialAlpha 0.5

learningRateType $1 String Sets the learning rate type
(see section 2.2.4). It ex-
pects a string that is ei-
ther 'linear', 'inverse' or
'BDH'.

learningRateType

'linear'

magnificationM $1 Float Sets the magni�cation con-
trol factor m (see section
2.2.4). Only applies when
learningRateType ===

'BDH'.

magnificationM

0.02

Table 1: mubu-SOM-js: Messages for algorithm control

3.1.2 Code Overview

The core of the mubu-SOM-js Max patch is a JavaScript program (see the �le
dev/mubu-som-js/descriptor_som.js). The choice of programming language was deter-
mined by the fact that CataRT is a Max patch and JavaScript (via the built-in [js] object)
can be used to script most aspects of the Max environment. This JavaScript version of the
SOM is in some ways a port from a �rst MATLAB implementation of the algorithm that
was developed by the author during an internship at IRCAM in the fall of 2017. Some
aspects of the structure of the presented program are based on the SOM Toolbox that was
developed at Helsinki University of Technology by Vesanto et al. (2000).

The �ow of the script is encapsulated in createSOM(). This function calls all other
important functions that make up the program, as can be seen in Listing 1.

12

Implementation

34 function createSOM()

35 {

36 normalizeData();

37 initializeMap();

38 trainMap();

39 }

Listing 1: dev/mubu-som-js/descriptor_som.js: createSOM()

After data normalization and map initialization, trainMap() is called, which executes
the training procedure by repeatedly calling the function training() in an asynchronous
background process (see Listing 2). For each step of the training phase, all calculations
happen inside trainingStep(). The most important part, the updating of node positions
on each iteration, is shown in Listing 3.

203 function training()

204 {

205 if (t < trainingLength)

206 {

207 trainingStep(t, trainingLength, rStep, alpha, winTimeStamp);

208 // Progress percentage on outlet 4

209 outlet(3, math.ceil(100 * (t / trainingLength)));

210 t++;

211 }

212 else

213 {

214 post('Training done.\n');

215 findBestMatches();

216 outputDataCoordinatesOnMap();

217 arguments.callee.task.cancel();

218 }

219 }

Listing 2: dev/mubu-som-js/descriptor_som.js: training()

307 // For each neuron, get neighborhood function and update its position.

308 neurons = neurons.map(function (neuron, index) {

309 // Gaussian neighborhood function

310 var h = alpha * math.exp(-(math.square(distances[index][bmu])

311 / (2 * math.square(r))));

312 return math.subtract(neuron, math.multiply(h, differences[index]));

313 });

Listing 3: dev/mubu-som-js/descriptor_som.js: Neuron positions are updated in trainingStep(). This Listing
implements equation 15 from Section 2.2.1.

After the training phase is �nished, the �nal map is populated by iterating over all
vectors and �nding their corresponding best matching units (meaning that node which is

13

Implementation

closest), as can be seen in Listing 4. A problem arises when multiple vectors share the
same node as their best matching unit; these vectors will have the same exact position in
the interface with no option to di�erentiate between them and no indication of how many
vectors reside in that location. To circumvent this issue, a small amount of random noise
is added to each vector's position. This creates clusters around the exact node position
and allows for the individual circles to be selected. An example of a map with added noise
can be found in Figure 3.

316 function findBestMatches()

317 {

318 bestMatches = normalizedData.map(function (vector) {

319 var differences = [];

320 var distancesFromVector = [];

321

322 // Subtract chosen vector from each neuron / map unit, then calculate that

323 // difference vector's magnitude.

324 // In other words, calculate the Euclidean distance between each neuron and

325 // the chosen vector.

326 for (var n = 0; n < neuronCount; n++)

327 {

328 distancesFromVector.push(math.norm(math.subtract(neurons[n], vector)));

329 }

330 // Find best matching unit's distance and index:

331 var bmuDistance = math.min(distancesFromVector);

332 var bmu = distancesFromVector.indexOf(bmuDistance);

333 return [bmu, bmuDistance];

334 });

335 }

Listing 4: dev/mubu-som-js/descriptor_som.js: BMUs for each vector are identi�ed in findBestMatches(). This
Listing implements equation 14 from Section 2.2.1.

14

Implementation

3.2 SOM Browser

The majority of the work for this thesis consisted of the development of a standalone
application for sample library exploration which we call SOM Browser. A screenshot of
the program can be seen in Figure 4. All source code for the application is located in the
digital submission package of this thesis in the directory dev/som-browser.

Figure 4: SOM Browser

SOM Browser o�ers users an alternative interface for the interaction with a folder of
audio samples. Instead of the traditional �le browser interface consisting of an alphabetical
list of �le names, the presented application o�ers a spatial map layout of the samples, with
the aim of allowing users a more direct interaction and giving them a quicker overview of
the sounds.

3.2.1 Functionality

Loading Audio Files When launching SOM Browser, the application opens with no
sounds or map loaded (see Figure 5). In order to create a map of a collection of sound �les,
the user can go to the menu bar at the top of the window and click the �Import Files...�
button to load several audio �les.

15

Implementation

Figure 5: SOM Browser without audio �les loaded

Calculating a Map Once �les are selected, the Sounds list on the left side of the
application will be populated. Next, by clicking �Analyze�, the program will start to
analyze the audio �les in the background, �rst extracting audio features (see section 2.1)
and then using this information to calculate a SOM using default settings. Alternatively,
some SOM parameters can be altered by selecting the Settings �eld next to Sounds and
adjusting the exposed parameters. Depending on the number of audio �les to analyze and
the selected training duration, the algorithm will take a while to process. Training progress
is indicated as a percentage in the central Map panel.

Map Interaction Upon completion of the SOM calculation, the Map panel will be
populated by a grid of white and grey squares. Each white square represents a single
sound �le. All �les are loaded into the computer's Random-Access Memory (RAM) for
quick access. Grey squares are empty nodes, meaning nodes to which no sound �les were
assigned. Sounds can be played by clicking on the white squares. They can also be played
immediately by holding down the Shift key and hovering over them. This allows the user a
very fast audition process and makes it possible to play back many �les in fast succession,
enabling very quick browsing of all loaded audio �les. When hovering over a square, the
corresponding �le name is shown next to the mouse cursor. More detailed information
about the �le, including its full path, duration and audio feature values can be found in
the FileInfo panel to the right of the map.

16

Implementation

Selecting and Exporting Favorites The bottom of the window is taken up by the
Favorites bar. If a sample is found on the map that the user would like to save for further
usage, they can drag the square from the map down into one of the slots labeled �Sample
#1 - #8�. Samples can also be also be played from the Favorites bar by clicking on them.
If the user is satis�ed with their selection of samples, they can export the selected Favorites
(e.g. for further usage in a DAW) by clicking on �Export Selection� in the top menu bar.
This will open a �le dialog window to select a location where the �les should be stored.

Saving and Loading Maps SOM Browser also o�ers the ability to save entire maps to
disk for recall in a later session or import previously stored maps by clicking on the menu
bar buttons �Save� and �Load Map�.

3.2.2 Libraries and Frameworks Used

Although a desktop application, SOM Browser was built entirely using web technologies,
most importantly JavaScript, in order to support multiple OSs with minimal e�ort. A vast
variety of libraries and frameworks are available to use for all aspects of the development
process. The following paragraphs outline the tools chosen for this application and their
bene�ts.

Electron �is an open source library developed by GitHub for building cross-platform
desktop applications with HTML, CSS, and JavaScript. Electron accomplishes this by
combining Chromium and Node.js into a single runtime and apps can be packaged for
Mac, Windows, and Linux� (GitHub, 2019). It o�ers a variety of Application Programming
Interfaces (APIs) to o�er native menus, interact with the �le system and more. Its ipcMain
and ipcRenderer APIs are used for asynchronous communication between the Graphical
User Interface (GUI) and processes running in the background.

React is a JavaScript library for building user interfaces (Facebook, 2019). It breaks
the GUI into smaller, self-contained units called components that can be independently
updated and rendered.

Web Audio API enables audio processing and synthesis in (web) applications (World
Wide Web Consortium (W3C), 2019). The use of this API makes it possible to write all
audio processing code for the presented work in JavaScript. Its core concept is the audio
routing graph, made up of audio nodes (simple building blocks such as an oscillator or a
recording). This graph connects sources to other nodes (e.g. e�ects or �lters) and �nally
to an output destination.

Meyda �is a Javascript audio feature extraction library. Meyda supports both o�ine fea-
ture extraction as well as real-time feature extraction using the Web Audio API� (Rawl-
inson et al., 2019b). Its e�ectiveness has been validated by researchers at Queen Mary
University (�Meyda [...] provide[s] excellent real time feature extraction tools�, Mo�at
et al. (2015)).

17

Implementation

3.2.3 Application Structure

SOM Browser is a stateful application, meaning it is designed to remember user interac-
tions, save its internal data (the state of the application) between interaction steps and
allow the storing of state data between sessions.

System States Before the start of the development process, a set of system states was
designed to represent the states through which the application is supposed to progress.
These states and their order are shown in Figure 6, giving an abstract overview of the �ow
of the program. Each panel represents a state and consists of a title (shown in capitalized
words at the top, e.g. Map Created), a method describing a state transition (underscored
and in lower case, e.g. show map) and the next state to transition into (bottom right,
marked by an arrow, e.g. → File Audition).

Figure 6: SOM Browser : Mock-up outlining system states

18

Implementation

Code Overview SOM Browser was developed using the git version control system (Tor-
valds and Hamano, 2019) in a repository on GitHub 1. The very basic structure of the
application, in particular the way in which the Electron and React frameworks interact, is
based on a boilerplate project by Phillip Barbiero (Barbiero, 2017).

The entry point of any Electron application is the main.js �le, which in the pre-
sented work can be found in dev/som-browser/main.js. This �le creates an instance
of the BrowserWindow class called mainWindow that serves as the single visible applica-
tion window. mainWindow then loads dev/som-browser/src/index.js, which imports
the React library and uses the React function render() to create the <App /> compo-
nent, which is de�ned in dev/som-browser/src/components/App.js. It serves as a con-
tainer for the rest of the application logic and the entire GUI (see Listing 7 and Section
3.2.5 for more details). From here, the structure of the source �les branches out into
the individual GUI elements in dev/som-browser/src/components/ and a set of �les in
dev/som-browser/src/background/ containing the code for audio feature extraction and
SOM calculation.

3.2.4 Background Processing

Both audio feature extraction and SOM calculation are processing intensive tasks, there-
fore it was clear from the beginning of the development stage that these parts of the
application must be separated from the GUI that the user interacts with. While it is not
possible to build a truly multithreaded application (due to the fact that the fundamental
Node.js framework is single threaded), one can create separate processes to run di�erent
tasks asynchronously. This is done by creating multiple BrowserWindow instances, as each
window is running in its own process. These windows can have their show �ag set to false
in order to hide them, thereby creating an invisible window for a background process.

SOM Browser initiates two consecutive background processes when the user clicks on
�Analyze�, one for feature extraction and one that runs the SOM algorithm. This is han-
dled by the function handleAnalyzeClick() (found in
dev/som-browser/src/components/App.js), which passes the necessary data to these
background processes by calling processFiles(files) and createSOM(files, settings)

(see Listing 5). Note the chaining of commands using several .then() statements:
SOM Browser performs asynchronous operations using the Promise feature of ECMAScript
2015 2.

The crucial parts of the feature extraction code can be found in Listing 6. Since the
SOM implementation in dev/som-browser/src/background/calculateSOM.js is logically
identical to what was previously discussed, we refer to Section 3.1.2 rather than dissecting
the contents of calculateSOM() separately.

1https://github.com/jonasmargraf/som-browser
2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

19

https://github.com/jonasmargraf/som-browser
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Implementation

284 if (this.state.files.find(e => !e.features)) {

285 console.log("Processing files...")

286 processFiles(this.state.files)

287 .then(files => this.setState({ files: files, loading: false }))

288 .then(() => {

289 console.log("Building map...")

290 createSOM(this.state.files, this.state.settings)

291 .then(som => {

292 this.setState({ som: som })

293 console.log(this.state)

Listing 5: dev/som-browser/src/components/App.js: handleAnalyzeClick() [excerpt]

66 // Framewise loop over audio and extract features

67 for (let start = 0; start < zeroPaddedSignal.length; start += bufferSize) {

68

69 let signalFrame = zeroPaddedSignal.slice(start, start + bufferSize)

70 let frameFeatures = Meyda.extract(featureList, signalFrame)

71 // we only use total loudness, not per band

72 frameFeatures.loudness = frameFeatures.loudness.total

73

74 // Append this frame's features to array of feature frames

75 for (let feature in frameFeatures) {

76 // Only use frames that have RMS > -60dBFS

77 (frameFeatures.rms >= 0.001) && features[feature].push(frameFeatures[feature])

78 }

79 }

80

81 // Get feature average

82 for (let feature in features) {

83 features[feature] = math.mean(features[feature])

84 }

85

86 // Add file duration to features

87 features.duration = decodedAudio.duration

88

89 // Pass averaged features to parent file

90 file.features = features

91 resolve(file)

Listing 6: dev/som-browser/src/background/extractFeatures.js: Audio features for each sound are extracted in
extractFeatures() using the Meyda library (shown here is an excerpt). Formal de�nitions for each feature can be
found in the equations of Section 2.1.

3.2.5 User Interface Components

The following paragraphs give an overview of the di�erent React components that make up
the GUI of SOM Browser (refer to Figure 4 for a screenshot of the program). An outline of
the entire application interface is shown in Listing 7, which contains most of the render()
function of dev/som-browser/src/components/App.js, including all components, their
properties and functions.

MenuBar is the horizontal element across the top of the application window. It holds �ve
buttons to perform audio analysis, load and export samples and store and recall calculated
maps.

20

Implementation

405 <div className="TitleBar"> <p>SOM Browser</p> </div>

406

407 <MenuBar

408 files={files}

409 onChange={this.handleFileListChange}

410 onFileClick={this.handleFileClick}

411 onAnalyzeClick={this.handleAnalyzeClick}

412 onSaveClick={this.handleSaveClick}

413 onLoadClick={this.handleLoadClick}

414 onExportClick={this.handleExportClick}

415 onPrintState={this.handlePrintStateClick}

416 />

417

418 <div className="leftPanel">

419 <input id="tab1" type="radio" name="tabs" defaultChecked/>

420 <label htmlFor="tab1">Sounds</label>

421 <input id="tab2" type="radio" name="tabs"/>

422 <label htmlFor="tab2">Settings</label>

423 <div className="content">

424 <div id="tabFileList">

425 <FileList

426 loading={this.state.loading}

427 files={files}

428 selectedFile={file}

429 onChange={this.handleFileListChange}

430 onFileClick={this.handleFileClick}

431 onAnalyzeClick={this.handleAnalyzeClick}

432 onSaveClick={this.handleSaveClick}

433 onLoadClick={this.handleLoadClick}

434 />

435 </div>

436 <div id="tabSettings">

437 <Settings

438 filesLength={files && files.length}

439 settings={this.state.settings}

440 onChangeSettings={this.handleChangeSettings}

441 />

442 </div>

443 </div>

444 </div>

445

446 <Map

447 som={this.state.som}

448 files={this.state.files}

449 progress={this.state.progress}

450 selectedFile={file}

451 onMapClick={this.handleMapClick}

452 onMouseLeave={this.handleMouseLeave}

453 />

454

455 <FileInfo file={file} />

456

457 <UserSelection

458 userSelection = {this.state.userSelection}

459 onClick={this.handleMapClick}

460 onUserSelectionUpdate={this.handleUserSelectionUpdate}

461 />

Listing 7: dev/som-browser/src/components/App.js: GUI Components

21

Implementation

FileList is one of two options for content to display in the left panel. It shows a list of
all loaded audio �les. Each list element is rendered by a nested FileListItem component.
When clicking an item in the list, the corresponding map square will be highlighted and
the FileInfo panel on the right will display information about the �le.

Settings is the other display option for the left panel. Here, a number of SOM parameters
can be set, similar to the Max messages listed in Table 1.

Map is the main focal point of the application. It displays a grid of grey and white
squares, where each white square represents one sound. The Map component is made up of
three nested components: MapNode (the grey background squares that are rendered �rst),
MapSubNode (the white squares representing sounds) and MapLabel (the label displaying
the name of the sound over which the user is currently hovering).

FileInfo is the panel on the right side of the application. It displays details about the
currently selected �le, including its path, duration and audio feature values.

UserSelection is the horizontal element across the bottom of the application. It consists
of eight instances of the nested component UserSelectionSlot, each representing a spot
into which the user can drag a sound to keep as a reference or for later exporting.

3.2.6 Algorithm Extension: Forced Node Population

After the SOM algorithm was �rst implemented in SOM Browser, it became apparent that
large parts of almost all created maps remained empty, which proved frustrating to interact
with since these empty areas are essentially �dead� spots where no sounds are located and
no interaction is possible. A method to counteract this phenomenon was deemed necessary.

In order to avoid �empty� nodes on the SOM � meaning nodes to which no input
vectors are mapped � a post-processing extension was added to the original algorithm
that inverts the mapping process, explicitly iterates over empty nodes and assigns each
one that input vector which is closest. This algorithm extension, which we call Forced
Node Population (FNP), executes the following sequence after the regular SOM has been
calculated (refer to Listing 8 to see the actual source code implementation):

1. Select a random empty node.

2. Find the closest vector for that node and assign it to this node.

3. Remove this vector from the possible choices.

4. Repeat.

This process is only performed once for all nodes that are empty immediately after the
initial SOM calculation. It is possible that the forced node population creates new empty
nodes, but in order to minimize distortion introduced by this procedure (see Section 5.1),
it is not repeated. The e�ect of the FNP extension can be clearly seen in Figure 7. For a
closer look at the results of this algorithm extension, please refer to Section 5.1.5.

22

Implementation

(a) SOM Browser without FNP (b) SOM Browser with FNP

Figure 7: Comparison of SOM Browser maps with (7b) and without (7a) FNP. White squares each represent a
sound, while grey squares denote unpopulated (�empty�) nodes. Smaller squares are used if multiple sounds are
assigned to the same node on the map.

358 function populateEmptyNeurons(som) {

359

360 let emptyNeuronIndeces = som.neuronAssignedFiles.map((e,i) => {

361 return (e === null ? i : false)

362 })

363 .filter(e => e !== false)

364

365 let tempVectors = som.normalizedData

366 let tempVectorIndeces = tempVectors.map((e,i) => i)

367

368 while (emptyNeuronIndeces.length >= 1) {

369 // Get random empty neuron, then remove from possible choices

370 let emptyNeuronIndex = math.pickRandom(emptyNeuronIndeces)

371 emptyNeuronIndeces.splice(emptyNeuronIndeces.indexOf(emptyNeuronIndex), 1)

372 let emptyNeuron = som.neurons[emptyNeuronIndex]

373

374 let distancesFromNeuron = tempVectorIndeces.map((e,i) => {

375 return math.norm(math.subtract(emptyNeuron, tempVectors[e]))

376 })

377

378 let nearestVectorIndex = tempVectorIndeces[distancesFromNeuron.indexOf(

379 math.min(distancesFromNeuron))]

380 // Remove the found closest vector from its previously assigned neuron

381 // and instead assign it to the empty neuron.

382 let oldAssignedNeuronIndex = som.neuronAssignedFiles.findIndex(e =>

383 Array.isArray(e) && e.some(el => el === nearestVectorIndex))

384 som.neuronAssignedFiles[oldAssignedNeuronIndex].splice(

385 som.neuronAssignedFiles[oldAssignedNeuronIndex].findIndex(

386 e => e === nearestVectorIndex), 1)

387 som.neuronAssignedFiles[emptyNeuronIndex] = [nearestVectorIndex]

388

389 tempVectorIndeces.splice(distancesFromNeuron.indexOf(

390 math.min(distancesFromNeuron)), 1)

391 }

392

393 return som

394 }

Listing 8: dev/som-browser/src/background/calculateSOM.js: The SOM algorithm extension FNP (see Section
3.2.6) is implemented in populateEmptyNeurons().

23

Evaluation

4 Evaluation

In order to evaluate the SOM algorithm as implemented in this thesis, as well as the
developed Som Browser application as a whole, a two-part process was employed. First, a
set of numerical metrics was selected to quantify aspects of the algorithm we deem salient
when judging its e�ectiveness for sound corpus organization. Second, a series of �ve semi-
structured interviews was designed, conducted and qualitatively analyzed. The following
sections go into detail about the selection of a data set of sound �les for the evaluation,
the metrics employed and the design of the interview.

4.1 Sound Corpus Selection

A crucial aspect for the evaluation of the work presented in this thesis is the choice of
an appropriate data set of audio �les to serve as a prototypical sound corpus. Ideally,
two key conditions should be met by this corpus. It should be ecologically valid, meaning
here that it should approximate a real-world sample library that would actually be used
by contemporary music producers, and it should be a well-established data set which has
been validated through use in other research, allowing for direct comparisons between
results. Preferably, something akin to the Giant Steps data sets (Knees et al., 2015) for
tempo and key detection should be used. In addition to identifying the aforementioned two
conditions, the decision was made to only select �one-shot� drum and percussion sounds
(meaning single instrument hits, no loops or other longer sounds) in order to evaluate a
single, concrete use case and limit the scope of this evaluation.

Data sets used in previous research vary and it is often not possible to clearly establish
provenance due to insu�cient information being given by the authors (see for example
Fried et al. (2014) and Shier et al. (2017), two papers which present important related
work but fail to clearly identify the source of their employed sound �les). Two established
databases that have been cited in the literature are ENST-Drums (Gillet and Richard,
2006) and the RWC Music Database (Goto et al., 2002). However, neither of these data
sets proved appropriate for this evaluation since they both contain only acoustic source
material and, especially in the case of RWC, largely consist of longer musical passages
instead of the single �one-shot� hits mentioned above.

For the reasons outlined above, we decided to forego the notion that the selected sound
corpus be a data set well-established through previous research. Because of this, more
emphasis is placed on the requirement for ecological validity. In order to maximize real-
world conditions, the sample library Drum Essentials (Ableton AG, 2019b) was selected
to serve as a sound corpus for this evaluation. It is a collection of samples created by
the German music software company Ableton AG that is distributed to owners of the
company's �agship product, the DAW Ableton Live (Ableton AG, 2019a). As part of a
commercially available product, this corpus of sound �les does not just approximate a real-
world sample library, it is an actual example of such a library and is, for the purpose of
this thesis, considered representative of sample libraries used in a modern music production
work�ow. One additional bene�t of using the selected sample library is the advantage of
a single, clearly identi�able source of the data � it is made available as a professional
product by Ableton. An alternative approach would have been to manually select sounds
from places like Freesound.org (Font et al., 2013), where all �les are licensed in a way

24

Evaluation

that makes them free to use, but their quality is not guaranteed to be consistent, or to
scour through sample libraries shared on various online forums, which brings along issues
of copyright and expired links, making it hard to trace the �les' origins.

The Drum Essentials collection as distributed by Ableton consists of 1181 one-shot
samples, each in a separate audio �le, as well as supplementary content, such as MIDI
clips and e�ects presets. Only the raw audio �les are used in the presented work. These
sound �les present a mixture of acoustic and electronic sounds stemming from a variety of
drums and percussion instruments. The library is organized by instrument group, of which
there are 17 in total. The names of these groups, as well as the number of sounds per group
can be found in table 2. Some sound �les appear in more than one group. These duplicates
have been removed, so that every sound only appears once throughout the entire data set.
The remaining number of sound �les is 1081.

Drum Essentials

Instrument Category Count

Bell 19

Bongo 6

Clap 71

Conga 27

Cymbal 54

Electronic Percussion 49

FX Hit 64

Hihat 167

Kick 166

Misc. Percussion 64

Ride 40

Rim 65

Shaker 39

Snare 181

Tambourine 23

Tom 138

Wood 8

Table 2: Shown are sound �le counts per instrument category of the Drum Essentials sample library.

4.2 Metrics for SOM Analysis

The optimal SOM for a given sample library should represent the input data with minimal
distortion. Samples should be mapped evenly to the nodes and all areas of the map should
be populated to maximize the usefulness of the interface space used.

In order to evaluate the SOMs created using the SOM Browser application and the
Drum Essentials test data set, three core metrics are used: quantization induced by the
SOM, map emptiness, and the ratio between nodes and their assigned vectors. These
metrics and the motivation behind them are outlined further in the following paragraphs.

25

Evaluation

4.2.1 SOM-Induced Quantization

Fundamental to the SOM principle is the idea of mapping vectors to their corresponding
BMUs, those nodes that are closest to them (see section 2.2). Several vectors can be
assigned to one node � this can also be thought of as a quantization process, where
the magnitude of the di�erence between the positions of vector xt and node mc is the
quantization error ∆t for that vector:

∆t = ||xt −mc||. (21)

To analyze the SOM, the distribution of quantization errors can be examined. Of
special interest as a single value metric for map quality is the median vector quantization
error:

∆̃ = median {∆1, . . . ,∆t} . (22)

In order to maximize information preservation, quantization errors should be mini-
mized.

4.2.2 Vector-Node Count

A second metric that was devised in order to quantify SOM quality is the count Ci of vectors
x1, . . . , xt mapped to a node mi and subsequently the distribution of those counts across
the map. Ideally, this distribution should look like a single, narrow spike � meaning that
(almost) all nodes have about the same number of vectors assigned to them, resulting in
an even distribution of sounds across the SOM Browser map interface. SOM parameters
should be chosen to approximate a uniform vector-node count for all nodes. For our
purposes, we examine the mean vector-node count of all n nodes for a given map:

C =
1

n

n∑
i=1

Ci (23)

4.2.3 Map Emptiness

Another relevant aspect of the created SOMs, and the third metric employed here, is
how much of the map remains �empty�, meaning how many nodes were not assigned any
vectors. We de�ne this �map emptiness� metric ME as the number of nodes m1, ...mn

whose vector-node count Ci = 0 (see section 4.2.2), divided by the total number n of nodes
mi:

ME =
1

n

n∑
i=1

δCi0, (24)

where

δCi0 =

{
0, if Ci 6= 0,

1, if Ci = 0.
(25)

26

Evaluation

For the purpose of making optimal use of the space alloted to the map in the SOM
Browser GUI, emptiness should be minimized so that users encounter the least amount of
�blind spots� possible.

4.2.4 In�uence of Forced Node Population

Since the concept of Forced Node Population is an addition to the SOM algorithm intro-
duced in this work (see section 3.2.6), its in�uence on the SOM should also be evaluated.
Therefore, the aforementioned metrics were calculated both with and without FNP.

4.3 Semi-structured User Interviews

In order to evaluate the SOM Browser application prototype presented in this thesis, �ve
semi-structured interviews with working audio professionals were conducted. These inter-
views were conducted by the author and consisted of a set of questions as well as observed
user interaction with the prototype software. For this evaluation, a guide including ques-
tions outlining the structure of the interview as well a set of ratings scales was created.
Subjects were asked about their experience with sample libraries and their current work-
�ow, and to interact with a sample library in a �le browser environment as well as using
the SOM Browser software. Audio from the conversations was recorded and subsequently
qualitatively analyzed.

4.3.1 Motivation to Conduct Interviews

This evaluation procedure entails two aspects, namely a semi-structured interview series
and a qualitative analysis of the collected responses. The decision to conduct qualitative
interviews stems from the exploratory nature of the presented work. In order to assess
the merit of the developed interface in its present state, direct feedback from potential
users was sought, which Lazar et al. (2017) refers to as �fundamental to human-computer-
interaction (HCI) research� (see Lazar et al. (2017, p.187)). But the motivation for a
direct conversation with users was not only to evaluate the presented interface proposi-
tion, but also for these interviews to serve as an exploration of users' current situation, to
hear about their own experience of it and to see what advantages and shortcomings they
identify in their present work�ows. In short, these interviews were motivated by a desire
to gain some understanding of the complex situation that is sample library interaction in
a music production environment and to gauge initial reactions to the developed prototype
alternative. The semi-structured approach was chosen in order to be able to react to inter-
viewees' responses more freely and allow the interviewer to ask follow up questions when
deemed necessary. Naturally then, the gathered responses cannot simply be quanti�ed,
which makes a qualitative approach to their analysis a �tting choice.

There are of course downsides to the chosen approach. Conducting interviews is time-
consuming, as it has to be done on a one-on-one basis and often (as in the case of this work)
in person. After the interview is over, additional time and e�ort goes into transcribing
and annotating the responses. This severely limits the number of participants that can
feasibly be recruited for a study, as is evident by the small number of �ve participants here.
Lazar et al. (2017) identi�es another disadvantage of interviews: �[...] data collection that
is separated from the task and context under consideration [...] su�er[s] from problems

27

Evaluation

of recall. [...] [I]t is, by de�nition, one step removed from reality� (Lazar et al., 2017,
p.188�.). Because of this, we follow the authors' suggestion of combining the interview
with user observation.

4.3.2 Interview Subject Selection

The SOM Browser application is not aimed at the general population. Instead, it has been
designed for specialized users that work in modern music production, as they constitute
the potential future user base of an application like the one presented here.

In order to increase the validity and relevance of potential subjects' responses, the
decision was made to interview only working professionals for this evaluation and to not
include hobbyists or people without any experience in music production.

Subjects were recruited by inquiring about quali�ed candidates (in other words, people
working professionally in modern music production) in the wider circle of acquaintances of
the author. No compensation was o�ered and only sparse information about the nature of
the research was given beforehand in order to minimize the possibility of instilling biases
in subjects. Most importantly, subjects were asked to participate in an interview about
sample library organization, but were not told that they would be shown software developed
by the author.

4.3.3 Informed Consent Form

For the purpose of documenting participants agreement to be interviewed, an informed
consent form was created for the interview series. This document outlines basic information
about the purpose and content of the interview and its duration. It also lists all data that
will be collected and explains the procedure used for data anonymization in order to protect
subjects' privacy. Lastly, it informs participants of their rights to withdraw their consent
to the usage of their data for research purposes and have it erased. This form was based on
a template provided by the ethics board of Technische Universität Berlin (TU Berlin) on
their website (TU Berlin, 2019). The form used by the author is included with the digital
submission of this thesis at the location evaluation/Eval_ConsentForm.pdf.

4.3.4 Test Subject Code Design

To ensure proper data anonymization, a test subject code was used. This code is comprised
of a series of letters and numbers and was created at the beginning of the interview by
the subjects themselves according to a set of instructions. All data and responses of the
subjects were directly labelled with this code, so that individuals' names were never used.
This code design procedure was again based on a template by the ethics board of TU
Berlin and can be found on the same website as the information concerning consent forms
(TU Berlin, 2019). The instruction sheet that was distributed to subjects can be found as
part of the digital submission of this thesis in evaluation/Eval_TestSubjectCode.pdf

4.3.5 Interview Structure

The guide developed for this interview is included with the digital submission of this thesis
in evaluation/Eval_Questionnaire.pdf. It outlines a three part structure: �rst, some

28

Evaluation

general questions about subjects' usage of sample libraries are posed. Second, some guided
interaction with a predetermined sample library in a traditional �le browser structure on a
computer follows. In the third section, the SOM Browser application is �nally introduced
and subjects are asked to use it and describe their impression of it.

4.3.6 Question Design

The general composition employed for most questions is twofold, combining closed- and
open-ended approaches: �rst, participants are asked to give a rating on a prede�ned scale
(see 4.3.7 below). Then, participants are free to elaborate on their answer and explain
their rating. If they don't initiate this themselves, a follow-up question along the lines of
�Could you tell me why you chose this rating?� is asked.

4.3.7 Selection of Ratings Scales

In order to record subjects' ratings, 6 point Likert scales were used (as is common in
Human-Computer Interaction (HCI) research, see Lazar et al. (2017, p.31, p.93)). The
di�erence between even and uneven anchor counts in Likert scales lies in the presence
(in the case of uneven anchor counts) or lack (for even counts) of a �neutral� middle op-
tion. Choosing scales without neutral mid-points was motivated by a desire to encourage
subjects to make a de�nite choice with regard to their rating. For a short look at the
e�ects of eliminating the mid-point, see Garland (1991). The scales presented to sub-

jects were explicitly labeled textually instead of numerically. The anchor points were
designed using two polar adjectives (such as �positive� and �negative�) and a consistent,
three-tiered set of adjective quali�cation with �very� marking the strongest option, fol-
lowed by the adjective without quali�er and then �somewhat� as the weakest variant. The
resulting scale for a positive/negative rating is composed of the following anchors: very
positive, positive, somewhat positive, somewhat negative, negative, very negative. The
selection of these quali�ers and appropriate anchors in general was inspired partially by
Vagias (2006). The full set of scales used for the conducted interviews can be found in
evaluation/Eval_Questionnaire_LikertScales.pdf.

4.3.8 Questions Used

In section 1, which serves as an introduction for the interviewee, general administrative
requirements such as the signing of the consent form and a topical introduction of the
research are taken care of. This is then followed by two simple Yes/No questions to
establish whether the subject works with third-party and/or personally created sample
libraries (see questions 1.1 and 1.2).

Section 2 begins with a presentation of the Drum Essentials sample library to the
subject. This presentation includes the information that it is a library of drum samples
that consists of around 1000 sound �les which are organized in subfolders according to the
respective instrument, such as kick drum, snare drum, hi-hat, and so forth. The interviewee
is invited to explore the sample library using the laptop that it is being presented on.

29

Evaluation

Then, in question 2.1, subjects are asked to describe how to approach familiarizing
themselves with the provided sample library in order to use its contents in a hypothetical
work project of theirs.

Question 2.2 follows this up with a request for a rating of the subject's level of satis-
faction with the work�ow that they outlined.

In the third and �nal section of the interview, the SOM Browser software is introduced
to participants. At �rst, a general overview of the interface is given, in which the interviewer
mentions the map layout in the middle (without explaining the nature of its organization),
the �le list on the left, the �le info panel on the right and the favorites bar at the bottom.

The subject is then asked to try out the software and explore its interface for a short
period of time. Thereafter, they are asked to give a rating of their overall �rst impression
of the software on a positive/negative scale (see question 3.1). Then, a follow-up question
about their opinion on what does or does not work is posed.

In question 3.2, subjects are required to rate the interface's ease of use.

Question 3.3 inquires speci�cally about the understandability of the language used.

3.4 and 3.5 are open-ended questions aimed at subjects' interpretation of the organi-
zation of sounds in the map layout: 3.4. asks what subjects think about the organization,
while 3.5 inquires speci�cally about a guess as to what the axes represent.

Question 3.6 then asks subjects to state whether or not they have a preference between
the traditional �le browser layout presented in section 2 or the SOM Browser interface
shown in section 3.

The last ratings question of the interview, 3.7 requests interviewees to assess their level
of comfortability with the software.

Finally, in 3.8 subjects are asked if they would consider using the presented software
tool and what changes they would like to see.

The full interview guide including all questions can be found as part of the digital
submission of this thesis at the location eval/Eval_All_Documents.pdf.

30

Results

5 Results

This chapter contains the results of our search for an optimal SOM for the Drum Essentials
sample library and the �ndings of the conducted user interviews.

5.1 SOM Metrics

SOM Browser exposes several variables of the algorithm, o�ering the user in�uence over the
resulting SOM. The following sections show the e�ects of these di�erent user-controllable
parameters on the metrics outlined in Section 4.2. We then compare the three di�erent
learning rate factor approaches that were implemented, including a di�erentiation between
di�erent magni�cation control values for the BDH method (see Section 2.2.4). Finally, an
ideal set of parameters for the selected sound corpus is chosen and the resulting map is
presented. This map is then also calculated using our FNP algorithm extension introduced
in 3.2.6 and the results compared.

Ideally, we'd like the map shown in SOM Browser to have one or two vectors per node
(meaning each map square only represents one or two sounds) and no empty nodes. We
therefore chose a map size of 32 × 32 = 1024 as it is the closest square number to 1081,
the number of samples contained in our chosen corpus.

5.1.1 E�ects of Training Duration

The in�uence of training duration on the quality of the produced map can be seen in Figure
8. As duration increases, all metrics improve. As can be seen in the boxplot diagram, the
distribution of quantization errors narrows in on the median with longer training as well.

A practical consideration to be noted is that training duration directly impacts pro-
cessing time. For our measurements, which were run on a fairly recent consumer laptop,
training for 104 steps took on the order of minutes, while training for 105 steps �nished
in about 30 minutes, and the training for 106 steps had to be run over night, as it took
several hours. Because of these practical considerations, which we assume to re�ect the
needs of potential users of the software, all following maps were trained for 104 steps.

5.1.2 E�ects of αinitial

The e�ect of the choice of αinitial, the starting value for the �gain control� of the node
adjustment in response to each vector during training, is shown in Figure 9. Higher αinitial
values yield slightly better results on quantization errors, but don't improve vector node
counts or map emptiness. Although this e�ect does not appear to be dramatic, it is in
line with Kohonen (1990), who suggests a starting value of α = 0.9. We therefore choose
αinitial = 0.9 for the next maps.

31

Results

Figure 8: SOM Browser : e�ect of training duration on SOM metrics. SOM parameters: mapSize = 32×32, linearly
decreasing α with αinitial = 0.9, rstart = 6.4, rend = 1

Figure 9: SOM Browser : e�ect of αinitial on SOM metrics. SOM parameters: mapSize = 32×32, training duration
= 104 steps, linearly decreasing α with αinitial = [0.9, . . . , 0.1], rstart = 6.4, rend = 1

32

Results

5.1.3 E�ects of Radius Size

Next, we examine the e�ects of the neighborhood function radius (Figures 10 and 11).
This kernel function, which controls how far around the best matching unit nodes will
be adjusted during each training step, decreases from a starting value rstart to a �nal
value rend. Kohonen (1990) recommends starting with a rather large radius and ending
with a value of one unit. This recommendation does not coincide with our measurements,
which obtained best results when using a narrow starting kernel radius of rstart = 2 that
decreases to rend = 10−1. It should be noted that although we achieved the best results
with rstart = 2, we used rstart = 16 for the comparison of rend values in order to avoid a
kernel that increases in size as training progresses.

Figure 10: SOM Browser : e�ect of rstart on SOM metrics. SOM parameters: mapSize = 32× 32, training duration
= 104 steps, linearly decreasing α with αinitial = 0.9, rstart = [16, . . . , 1], rend = 1

5.1.4 Learning Rate Type Comparison

There are three di�erent approaches to the learning rate factor α that are implemented
in SOM Browser : linearly decreasing, reciprocally decreasing (�Inverse�), and the local
adaptive learning rate as proposed by Bauer et al. (1996) (�BDH�). Di�erences between
these are shown in Figure 12 and Table 3. While �Inverse� shows worse results than
�Linear�, improvements can be seen when using BDH.

BDH o�ers another parameter, m, that can be controlled. Bauer et al. (1996) suggest
values of m = −1, −0.5 or −0.25. We separately measured the e�ects of values for m
of [1.0, 0.9, . . . ,−0.9,−1.0], the results for which can be seen in Figure 13. Interestingly,
median quantization errors, mean vector node counts and map emptiness all reach a min-
imum at m = 0, which e�ectively results in a constant learning rate of α = αinitial, as

33

Results

Figure 11: SOM Browser : e�ect of rstart on SOM metrics. SOM parameters: mapSize = 32× 32, training duration
= 104 steps, linearly decreasing α with αinitial = 0.9, rstart = 16, rend = [16, . . . , 1]

the adaptive local learning term of the BDH equation equals 1 when m = 0 (see Section
2.2.4). At the same time, the distribution of errors increases for positive values of m and
is generally larger than for m < 0. In order to strike a balance between a small median
quantization error and a narrow error distribution, m = −0.2 was chosen for the �nal map.

Figure 12: SOM Browser : comparison of linearly decreasing, reciprocally decreasing (�Inverse�) and BDH learning
rate factors. SOM parameters: mapSize = 32 × 32, training duration = 104 steps, αinitial = 0.9, rstart = 2,
rend = 0.1

34

Results

Comparison of SOM Learning Rate Types

BDH Linear Inverse

Median Quantization Error ∆̃ 0.29 0.36 0.71

Mean Vector Node Count C 1.61 1.49 3.16

Map Emptiness ME 0.35 0.29 0.67

Table 3: Comparison of SOM Learning Rate Types

Figure 13: SOM Browser : BDH: E�ect of Magni�cation Control m. SOM parameters: mapSize = 32× 32, training
duration = 104 steps, αinitial = 0.9, rstart = 2, rend = 0.1

5.1.5 Final Map and In�uence of FNP

Based on the results presented above, a �nal map for the Drum Essentials sound corpus was
created with the parameters mapSize = 32× 32, training duration = 104 steps, αinitial =
0.9, BDH learning rate factor, m = −0.2, rstart = 2, and rend = 0.1. A second map
was calculated using the same parameters, but also using the FNP algorithm extension
we developed. Comparisons of the map with and without FNP are shown in Table 4 and
Figures 14 and 15. It can be seen that while FNP introduces more distortion into the map
(indicated by higher quantization errors), it does improve both mean vector node counts
and map emptiness.

35

Results

In�uence of Forced Node Population (FNP)

With FNP Without FNP

Median Quantization Error ∆̃ 0.25 0.20

Mean Vector Node Count C 1.29 1.45

Map Emptiness ME 0.18 0.27

Table 4: In�uence of FNP

Figure 14: SOM Browser : Comparison of FNP in�uence on SOM. SOM parameters: mapSize = 32 × 32, training
duration = 104 steps, αinitial = 0.9, BDH learning rate factor, m = −0.2, rstart = 2, rend = 0.1

(a) SOM Browser without FNP (b) SOM Browser with FNP

Figure 15: SOM Browser : Visual In�uence of FNP on Map of the Drum Essentials sound corpus. The blue
mark denotes the same �le in both maps. SOM parameters: mapSize = 32 × 32, training duration = 104 steps,
αinitial = 0.9, BDH learning rate factor, m = −0.2, rstart = 2, rend = 0.1

36

Results

5.2 Interview Results

Following the presentation of an optimal set of parameters for SOM Browser to display the
Drum Essentials corpus, the rest of this chapter is dedicated to the results of the conducted
user interviews, whose design is explained in Section 4.3.

The group of interview subjects consisted of one woman and four men with an average
age of 36 years and an average 15 years of experience in the audio industry. Subjects
described their profession as one or several of the following: composer, producer, DJ,
performer, sound / mixing engineer, sound designer.

Subject responses to the ratings questions described in Section 4.3.8 can be found in
Figure 16.

Figure 16: Likert scale ratings by interview subjects for questions concerning satisfaction with their current sample
library work�ow and �rst SOM Browser impressions

37

Results

Recordings of the conducted interviews were transcribed by the author. These tran-
scriptions were examined for instances relating to the interview questions and the relevant
instances marked and subsequently coded using an emergent coding approach (Lazar et al.,
2017, p.304). These codes are presented here using matrix data displays as proposed by
Saldaña (2015, p.254) and Henwood and Pidgeon (2003).

5.2.1 Established Work�ow Responses

Sections 1 and 2 of the interview questionnaire inquire about subjects' current work�ow
practices. Recorded responses are grouped into the categories Description (see Table 5)
and Assessment (see Table 6). A �owchart of established work�ow practices was extracted
from these responses and is displayed in Figure 17.

Description of Established Sample Library Work�ow

Code (Subject Count) Example Summary

Mental Representation
(3)

�I know exactly what I'm looking
for�

Subjects often have a clear men-
tal representation of the sound
they are searching.

Goal Pursuit (3) [I listen to sounds] �[u]ntil I �nd
the one that I want�

Subjects will only look for sounds
until they �nd something that
satis�es their immediate needs.

Search Algorithm (5) �I would just go through every
folder [...] and listen carefully to
every sound�

Subjects describe three search
�algorithms� : sequential (listen-
ing in alphabetical order), name-
based (looking at �le or subfolder
names) and random search (arbi-
trarily selecting samples).

Contextual Evaluation
(3)

�quickly go through the sounds
while the track is playing and
then �nd one that kind of �ts�

The ability to audition sounds
in the context of the relevant
project is important.

Iteration (4) �I will have like eight di�erent kick
drums [...] and then I go through
them again as another iteration of
choice.�

Subjects will select a variety of
samples as potential candidates
and then perform another search
among the selected subset.

Frustration (5) �it takes a lot of time actually and
it's not the most fun part�

Looking through lists of samples
sequentially is perceived to cause
frustration.

Table 5: Established sample library work�ow as described by subjects. Shown are response codes along with example
data and interpretive summary. The number shown in parentheses behind each code denotes how many individual
subjects gave responses corresponding to that code.

38

Results

Assessment of Established Sample Library Work�ow

Code (Subject Count) Example Summary

Requires Organization
(2)

�if I was organized and I had my
5000 sounds from the past �ve
years it [would] be really nice�

Subjects note that their current
work�ow relies on sample libraries
that are organized in some way
and note sources of frustration
such as lost or duplicate �les.

Requires Experience (1) �experience [...] is probably the
key�

Experience (both in a general
professional sense and speci�c to
the sample libraries at hand) is
mentioned as a factor for an ef-
�cient, successful work�ow.

Good Enough (3) �It could be better but it's okay.
Like, it works in most of cases.�

Current work�ow practices are
deemed �good enough� , but
subjects are interested in alterna-
tive approaches.

Time-Consuming (3) �[H]ow to listen to all this?� Subjects remark upon the amount
of time and e�ort that go
into searching through sample li-
braries.

Overwhelming (2) �it was overwhelming [...] to look
through all this�

Finding relevant samples in a
library is described as over-
whelming.

Alphabetic Bias (1) �I think it makes no sense that I'm
mainly choosing from the �rst half
of the alphabet�

Sample selection is in�uenced by
alphabetical name ordering. Typ-
ically, samples positioned towards
the beginning of an alphabetical
list are more likely to be chosen.

Table 6: Subjects' assessment of their established sample library work�ow. Shown are response codes along with
example data and interpretive summary. The number shown in parentheses behind each code denotes how many
individual subjects gave responses corresponding to that code.

5.2.2 SOM Browser Responses

The third and largest section of the questionnaire assesses subjects' �rst impressions of the
SOM Browser software. Responses varied between individual subjects, but can generally
be grouped into positive and negative statements. These are presented in Tables 7 and 8.
Notable positive responses were prompted by the visual design of the software, as well
as the creative potential for using the software as an instrument because of the gestural
interaction it facilitates. Looking at participants' negative responses, the organization
of the map interface was seen as incomprehensible, with subjects not able to directly
discern an overarching order (although some areas of similarity were identi�ed), which in
turn led to some questioning of the app's usefulness in its current state.

39

Results

Established Sample Library Work�ow

Well-De�ned

Ambiguous

OS File Browser

DAW Browser

Sequential

Name-Based

Random

Match

Iteration

Mental Representation
of Sound

Search Tool

Search Algorithm

Contextual Evaluation

Figure 17: Flowchart of established sample library work�ow as described by interview subjects

40

Results

SOM Browser: Positive Responses

Code (Subject Count) Example Summary

Visual Design (4) �Visually, it makes sense.� Subjects characterize the visual
design of the software as appeal-
ing.

Gestural Interaction (2) �for expressive gestures as a per-
formance tool, it's fantastic as a
continuous thing�

Continuous playback with track-
pad/mouse gestures (while hold-
ing down Shift) is seen positively
when using SOM Browser more
like an instrument.

App as Instrument (2) �this is an instrument� Subjects remark upon potential
creative use of the software by not
just using it to select samples, but
also treating it as an instrument
by itself.

User-Friendly (3) �Even if I would be starting, like,
it's not confusing, [...] it's clear�

Subjects describe use of the soft-
ware as user-friendly.

Favorites Selection (2) �I also �nd the favorites pretty
good�

The Favorites bar at the bottom
of SOM Browser can be seen as
positive.

Table 7: Positive responses given by subjects after using SOM Browser. Shown are response codes along with
example data and interpretive summary. The number shown in parentheses behind each code denotes how many
individual subjects gave responses corresponding to that code.

SOM Browser: Negative Responses

Code (Subject Count) Example Summary

Incomprehensible Map
Organization (5)

�I don't get the order, that's frus-
trating.�

Subjects are not able to discern
any logical order within the map.

Usefulness (2) �right now it's beautiful but it
makes no sense unfortunately�

Subjects question the usefulness
of the software in its current state.

Confused by Empty
Nodes (3)

�Why are there a few grayed out?� Empty nodes on the map confuse
subjects.

Overwhelming (1) �looking at these many, many tiny
squares gives me anxiety�

The map interface is seen by some
subjects as overwhelming.

No File Labels (1) �here it's just white bricks� The fact that no �les besides the
current selection are labelled on
the map is seen negatively by
some subjects.

Unnecessary Interface
Elements (2)

�Eliminate the top bar, elimi-
nate all the bottom just keep this
[points to map in center]�

Subjects question the need for in-
terface elements besides the cen-
tral map display.

Table 8: Negative responses given by subjects after using SOM Browser. Shown are response codes along with
example data and interpretive summary. The number shown in parentheses behind each code denotes how many
individual subjects gave responses corresponding to that code.

41

Results

5.2.3 Work�ow Comparison: SOM Browser vs. Established Work�ow

Response codes concerning the comparison of SOM Browser and established work�ows
are shown in Table 9. Subjects stated a clear preference for their established work�ows,
but remarked upon the potential of the software, particularly if it could be presented as
an optional work�ow that integrates with existing production environments (something
that is echoed in the feature requests in Section 5.2.4).

Work�ow Comparison: SOM Browser vs. Established Work�ow

Code (Subject Count) Example Summary

Preference for Estab-
lished Work�ow (4)

�I wouldn't want to miss my old
way of looking for stu�.�

Subjects state a preference for
their established way of working
with samples.

Optional Work�ow (3) �I would go for the traditional and
just be presented with this like
[an] alternative�

Subjects would like to incorporate
SOM Browser into their work�ow
if it was well-integrated into their
existing tools and could be used
as an alternative view mode.

Potential (4) �I could imagine, that this if you
use it a bit and you get used to it,
yeah, it could make things faster
actually�

The potential for certain work�ow
improvements such as increased
speed and removal of alphabetical
bias is acknowledged.

Table 9: Subjects' responses when asked to compare SOM Browser to their established work�ows and state a
preference. Shown are response codes along with example data and interpretive summary. The number shown in
parentheses behind each code denotes how many individual subjects gave responses corresponding to that code.

5.2.4 SOM Browser: Feature Requests

Lastly, subjects were asked what changes and additions they would like to see in the
presented software. These responses can be found in Table 10. Two particularly noteworthy
responses were the desire for DAW integration of the functionality of SOM Browser and
the ability to navigate the map using Arrow keys.

42

Results

SOM Browser: Feature Requests

Code (Subject Count) Example Summary

DAW Integration (2) �I would really like to see it as a
plug-in or inserted in the produc-
tion environment that I have. I
would de�nitely not use it if it's a
standalone thing.�

Subjects want to integrate the
functionality of SOM Browser

into their established production
environment, either in plug-in
form or directly within the DAW.

Arrow Key Navigation
(3)

�You need the arrows.� The need for granular map nav-
igation using the keyboard's Ar-
row keys was mentioned repeat-
edly by subjects.

User-De�nable Map Or-
ganization (3)

�be able to choose what each axis
is�

The ability to more explicitly con-
trol how maps are organized.

Pre-Categorization (2) �a pre-categorization would be
nice�

Subjects express the wish to in-
corporate some sort of catego-
rization to precede map calcula-
tion into the software.

File Limit (2) �it's about limiting the squares� Subjects would like to limit the
total number of �les that can
be displayed on a map. By
preventing larger maps, the in-
terface would potentially become
less overwhelming.

Multi-Page Maps (1) �[...] something that's like a page
based. Like, you go through the
folders or you just type in quickly,
just give here all the kicks or only
all the snares�

Larger sample libraries could
be spread out across several
pages, potentially based on
the previously mentioned pre-
categorization.

Feature Filters (2) �[If] I'm looking for a sample that
[...] is very short, then you would
have to be able to �lter this some-
how�

Incorporate the option to �lter
samples on the map based on cer-
tain feature values or ranges.

Color Coding (3) �all the dark and bass heavy stu�
[...] in another color than [...] all
the tsh-tsh-tsh stu� [makes high
frequency noises]�

Introduce color as an additional
dimension to display information
about the �les on the map.

Touchscreen Support (1) �Only if it's like on a touchscreen� Support for SOM Browser on
touchscreen devices.

Color Customization (1) �maybe people can choose their
colors�

Give users the option to cus-
tomize interface colors.

Sample Retriggering (1) �when I'm on a square I need a
way to retrigger�

Ability to trigger the same sample
repeatedly without clicking multi-
ple times (presumably by pressing
the Spacebar).

Larger Font Size (2) �the letters [need] to be a bit more
prominent�

Increase font sizes across the in-
terface.

Table 10: Subjects' feature requests for SOM Browser. Shown are response codes along with example data and
interpretive summary. The number shown in parentheses behind each code denotes how many individual subjects
gave responses corresponding to that code.

43

Discussion

6 Discussion

In SOM Browser, we have developed a practical application for sound corpus organiza-
tion using SOMs. To minimize empty areas in our interactive map interface, we have
extended the SOM algorithm with a new method for node population, FNP, that reduces
the number of empty nodes at the cost of some additional vector quantization. In a series
of qualitative interviews with audio professionals we have identi�ed an established sample
library work�ow, as well as con�rmed participants' interest and proclaimed need for al-
ternate interfaces. Participants were asked to use SOM Browser and give feedback, with
most �rst impressions being characterized as positive, although the organization of sounds
in the map interface was seen as not easily comprehensible.

In the remaining sections, we further discuss the reported results and o�er some in-
terpretation and contextualization of them before moving on to a summary of the work
presented in this thesis, including a look at its strengths, weaknesses and limitations. Fi-
nally, we suggest areas to explore in future work.

6.1 Interpreting the Results

Section 5.1 lays out the process of �nding an optimal set of parameters for a SOM of the
Drum Essentials sample library. Unsurprisingly, the longer the algorithm is trained, the
better it performs. Noticeable is the jump in quality for both quantization errors and map
emptiness when going from a training duration of 104 to 105. These �ndings coincide with
Kohonen (1990), whose section on �Practical Hints for the Application of the Algorithm�
o�ers the following advice:

�Typically we have used up to 100 000 steps in our simulations, but for �fast
learning�, e.g., in speech recognition, 10000 steps and even less may sometimes
be enough.�

A recommendation for users of SOM Browser could be to �nd a general combination
of settings that works well for their audio �les with 104 steps and then run the algorithm
again for 105 steps to further improve map quality. Nonetheless it would be interesting
to investigate this further and see whether users actually perceive a noticeable di�erence
when using signi�cantly longer training times. As for the performance of our software, we
see clear room for improvement of the training algorithm by porting it from JavaScript
to C and making use of optimization techniques such as parallel processing and Graphics
Processing Unit (GPU) acceleration.

Rather expectedly, a higher αinitial decreases map quantization errors for our data
set. This mirrors the theory behind the algorithm, according to which more drastic node
adjustment in the beginning of the training phase creates the overall structure of the
map, whereas at the end of training, when α has decreased drastically, only minor local
adjustments happen. Starting with a lower αinitial would prohibit strong node adjustment
overall. Interestingly, the choice of αinitial does not seem to improve vector node counts or
map emptiness, which appear to hover around a middle value in Figure 9.

Our �nding that larger starting values for the neighborhood function radius actually
produced worse results than using smaller starting radii contradicts Kohonen's recommen-
dations (Kohonen, 1990), who states:

44

Discussion

�If the neighborhood is too small to start with, the map will not be ordered
globally. Instead various kinds of mosaic-like parcellations of the map are seen�

Our subjective impression when exploring the map of drum sounds in SOM Browser
does not really match this assertion. SOM global ordering could be further assessed by
calculating maps for data containing group labels and examining if data from the same
group is mapped to the same area of the SOM.

When comparing the three di�erent types of learning rate factors that were imple-
mented, the reciprocally decreasing function (�Inverse�) was outperformed by the two other
methods. We believe the reason behind this to be that α drops o� too strongly before the
map has gained its global structure. BDH on the other hand performs best out of all
three methods, which most likely has to be attributed to its ability to adapt the size of α
locally. As to why BDH delivered the smallest median quantization error with a choice of
m = 0, which e�ectively cancels out all adaptive local learning and results in a constant
α = αinitial, we are uncertain at this time. The simulations presented in the original pa-
per introducing the method obtain best results for other values (see Figure 2 in (Bauer
et al., 1996, p.18)). It should be noted however that the authors only examine one- and
two-dimensional input data.

With regard to FNP, the extension to the original SOM algorithm we implemented,
we consider it a practical usability improvement at the cost of additional map distortion.
Nevertheless, the enhancement of other aspects of the produced map (most importantly, a
lower map emptiness) justify its application. Naturally, if more of the original map's nodes
are populated to begin with, less overall distortion will be added by applying FNP.

While the conducted interviews were analyzed qualitatively, we did gather some quan-
titative data through the usage of Likert scales. This was done to gauge participants �rst
reactions to SOM Browser quickly and coarsely. In Figure 16, it can be seen at a glance
that most answers lie on the positive side of the scales.

With the median answer to question 2.2 about participants' satisfaction with their cur-
rent options for interacting with the presented sample library being �somewhat satis�ed�,
and participants more in-depth responses showing some frustrations, we infer that their
current work�ow can be seen as good enough, but nothing more. Subjects are aware of its
shortcomings and are interested in new ways of working, which attests to the need for new
tools such as what was developed in this thesis. As a by-product of this interview series,
a model for the current practice of working with sample libraries could be established (see
Figure 17). Particularly interesting is the iterative interplay between participants mental
representation of the sounds they are looking for and contextual evaluation of their search
results within their production environment.

As for SOM Browser, interview participants' �rst impressions were mostly positive, yet
also critical of several aspects of the software. Clearly, potential for improvement remains.
Most importantly, subjects were not able to comprehend the overall order of the map
layout, which caused frustration and some fairly critical responses. We believe there to
be several causes of this. It is certainly possible that the particular SOM we presented
to subjects did not accurately serve as a similarity map of our sample library, perhaps
due to the previously discussed fact that we used a small radius for the neighborhood
function. This could have had the negative e�ect on the global order of the map that is

45

Discussion

predicted by Kohonen (1990) (see the quote above). At the same time, we suspect that a
methodological �aw in our question design could also have in�uenced participants' inability
to discern order within the map; we never suggested the map could have anything to do
with any kind of potential sonic similarity. Instead we asked �What do you think about the
organization of sounds in this interface?� and �What do you think the axes represent?�.
Some responses to the �rst question did include �there seem to be areas somehow� and
�Okay, so these are the percussion . . . �, perhaps indicating that some local similarities
could be identi�ed, but not placed in a context concerning the entire map. But the second
question is e�ectively impossible to answer correctly; the axes of a two-dimensional SOM
are in essence meta-features, or features of features. This is not something that can be
concluded without additional information. We were aware of the impossible nature of the
question when designing the interview, but decided to ask it because we were interested
in what possible answers we would encounter. Instead, it would have perhaps been more
bene�cial to position the map interface from the beginning as representing some sort of
similarity and then gauging whether participants can accept it and relate to it.

Participants clearly stated their preference for their established work�ow. This was to
be expected, as our presented software is limited in scope and still early in its development
process. Additionally, interview participants were professionals, who presumably have
spent some time and e�ort to optimize their work�ow. Nevertheless, the participants
recognized some potential in SOM Browser and stated a desire to explore incorporating
it into their work�ow, under the condition that it could be integrated with their existing
production environments. Participants also mentioned numerous feature requests, which
could be incorporated into the software to improve usability, such as support for Arrow
key navigation, ways to �lter by feature and some form of additional categorization.

6.2 Strengths, Weaknesses and Limitations

In summarizing the present work, we can identify some strengths as well as weaknesses
that bear mentioning brie�y. Listed in addition are limiting factors of the work, before we
move on to a discussion of potential future work and a �nal conclusion.

Strengths Our SOM implementation o�ers a quick, unsupervised, visual layout of a
sound corpus. It can be used for completely unlabelled data and can therefore be a bene�t
to audio experts and more casual music producers alike. The addition of a SOM implemen-
tation to CataRT and MuBu For Max gives expert audio software users that build their
ownMaxMSP performance systems an addition to their existing toolbox. SOM Browser on
the other hand is a simple to use, cross-plattform application that allows no-frills contact
with a ML algorithm that can currently not be found in commercial audio software.

Weaknesses It stands to reason that the collection of audio features used in this work
can be improved upon, or should at least be re-evaluated critically in order to improve the
quality of the produced maps. Interview participants struggled with the presented map
layout, which could be due to a lack of information, but also due to insu�cient quality
of the SOM they saw. Mel Frequency Cepstral Coe�cients (MFCCs) could be used to
represent the spectral envelope of the sounds better. Additionally, each sample's temporal
envelope should be considered.

46

Discussion

The qualitative analysis of the conducted interviews could also be improved upon by
using multiple independent researchers for the coding process. As it stands, no inter-rater
reliability exists, as the analysis was done by the author. This also means that although
care was taken to work diligently and objectively, the potential for bias in the coding and
the general interview evaluation results is obvious.

Limitations Although the Drum Essentials data set used in this work can be considered
representative of a contemporary sample library, the work presented here needs to be
applied to other collections of sounds as well before it can be considered more universally
applicable. In conducting the interviews, we were mainly interested in getting an overview
of possible responses and reactions. To this end, we chose a qualitative, semi-structured
approach that prevents us from presenting conclusive, quantitative results. Finally, a
limitation of SOM Browser is that it is not a tool for very large sample libraries; the
library used by us, consisting of just over one thousand sound �les, presents essentially the
sensible limit of �les that can be displayed.

6.3 Outlook

As discussed earlier, SOM Browser o�ers ample opportunity for future work and improve-
ments. A technical improvement could be the implementation of the Batch Map, which
o�ers to potentially increase speed by an order of magnitude (Kohonen and Honkela, 2007).
Another welcome addition would be node initialization using PCA, as can be done in the
SOM toolbox for MATLAB (Vesanto et al., 2000). Finally, a reimagining of the software
in plug-in format, either as a MaxForLive device for Ableton Live or as a Virtual Studio
Technology (VST) instrument, would be a more substantial undertaking that would sat-
isfy the desire of our interview participants for a more direct inclusion of SOM Browser
functionality in their existing production environments.

For the SOM algorithm as a whole and its utility for sound corpus organization, an
exploration of input dimension weightings for di�erent applications could be interesting.
Perhaps the same set of features can be used with di�erent weightings depending on if the
corpus contains percussive, monophonic or polyphonic sounds. Additionally, an augmen-
tation of the audio feature input data with �le metadata could also be considered. One
can imagine for example using a string distance function to compute �le name similarity.

6.4 Conclusion

While the availability of large sample libraries and cheap storage solutions has increased,
tools for navigating, searching and organizing these increasingly unmanageable audio �le
collections have not kept pace. The present thesis approaches this problem from a practical
perspective. We implement the Self-Organizing Map algorithm and apply it to sound
corpus organization. Our implementation is embedded in two applications. In MaxMSP, it
can be used to extend CataRT and the MuBu For Max package, o�ering new possibilities
to expert users. In SOM Browser, it is used for a fast, visual interface for sample library
exploration, o�ering an alternative to the established music production work�ow. In doing
this, our software o�ers direct access to a ML algorithm that to our knowledge is not
available in any commercial audio software. We also extend the core algorithm with FNP,

47

Discussion

a method that allows an improved utilization of the screen space allocated for the SOM
interface by reducing the areas of the map to which no sound is mapped. Although the
presented work focuses on utilizing short recordings of drum sounds, it could in principle
be applied to other sounds as well.

After searching for optimal parameters according to objective measures of map quality
and producing a map for a chosen corpus of drum sounds, we conduct a series of qualitative
interviews with audio professionals. Participants' responses allow us to identify a prevalent
method of working with sample libraries, which we codify into a generalized model of
the established work�ow. We con�rm the need for and interest in alternate interfaces
and present participants with our developed software. Interview feedback was su�ciently
positive to warrant further work towards this end.

48

References

7 References

Ableton AG (2019a): Ableton Live 10. Software. URL https://www.ableton.com/en/

live/. Access 7.2.2019.

Ableton AG (2019b): Drum Essentials. Online. URL https://www.ableton.com/en/

packs/drum-essentials/. Access 7.2.2019.

Adeney, Roland and Andrew R Brown (2009): �Performing with grid music systems.� In:
Improvise: The Australasian Computer Music Conference 2009. Australasian Computer
Music Association (ACMA), pp. 102�110.

Algonaut (2019): Atlas. Software. URL https://www.algonaut.tech/. Access 7.2.2019.

Barbiero, Phillip (2017): pbarbiero/basic-electron-react-boilerplate: Modern and Mini-
mal Electron + React Starter Kit. Online. URL https://github.com/pbarbiero/

basic-electron-react-boilerplate. Access 7.2.2019.

Bauer, H.-U.; Ralf Der; and Michael Herrmann (1996): �Controlling the magni�cation
factor of self-organizing feature maps.� In: Neural computation, 8(4), pp. 757�771.

Coleman, Graham (2007): �Mused: Navigating the Personal Sample Library.� In: ICMC.
Citeseer.

Cosi, Piero; Giovanni De Poli; and Giampaolo Lauzzana (1994): �Auditory Modelling and
Self-Organizing Neural Networks for Timbre Classi�cation.� In: Journal of New Music
Research, 23(1), pp. 71�98.

Cycling '74 (2019): Max. Software. URL https://cycling74.com/. Access 7.2.2019.

de la Cuadra, Patricio (2019): �Pitch Detection Methods Review.� URL https://ccrma.

stanford.edu/~pdelac/154/m154paper.htm.

Facebook (2019): React. Software. URL https://reactjs.org/. Access 7.2.2019.

Fletcher, Harvey and Wilden A Munson (1933): �Loudness, its de�nition, measurement
and calculation.� In: Bell System Technical Journal, 12(4), pp. 377�430.

Font, Frederic; Gerard Roma; and Xavier Serra (2013): �Freesound technical demo.� In:
Proceedings of the 21st ACM international conference on Multimedia. ACM, pp. 411�412.

Fried, Ohad; Zeyu Jin; Reid Oda; and Adam Finkelstein (2014): �AudioQuilt: 2D Arrange-
ments of Audio Samples using Metric Learning and Kernelized Sorting.� In: NIME. pp.
281�286.

Garland, Ron (1991): �The mid-point on a rating scale: Is it desirable.� In: Marketing
bulletin, 2(1), pp. 66�70.

Gillet, Olivier and Gaël Richard (2006): �ENST-Drums: an extensive audio-visual database
for drum signals processing.� In: ISMIR. pp. 156�159.

GitHub (2019): Electron. Software. URL https://electronjs.org/. Access 7.2.2019.

49

https://www.ableton.com/en/live/
https://www.ableton.com/en/live/
https://www.ableton.com/en/packs/drum-essentials/
https://www.ableton.com/en/packs/drum-essentials/
https://www.algonaut.tech/
https://github.com/pbarbiero/basic-electron-react-boilerplate
https://github.com/pbarbiero/basic-electron-react-boilerplate
https://cycling74.com/
https://ccrma.stanford.edu/~pdelac/154/m154paper.htm
https://ccrma.stanford.edu/~pdelac/154/m154paper.htm
https://reactjs.org/
https://electronjs.org/

References

Goto, Masataka; Hiroki Hashiguchi; Takuichi Nishimura; and Ryuichi Oka (2002): �RWC
Music Database: Popular, Classical and Jazz Music Databases.� In: ISMIR, vol. 2. pp.
287�288.

Heise, Sebastian; Michael Hlatky; and Jörn Loviscach (2008): �Soundtorch: Quick Brows-
ing in Large Audio Collections.� In: Audio Engineering Society Convention 125. Audio
Engineering Society.

Henwood, Karen and Nick Pidgeon (2003): Grounded theory in psychological research.
American Psychological Association, pp. 131�55.

Iced Audio (2019): Audio Finder. Software. URL http://www.icedaudio.com/. Access
7.2.2019.

Knees, Peter; et al. (2015): �Two Data Sets for Tempo Estimation and Key Detection in
Electronic Dance Music Annotated from User Corrections.� In: ISMIR. pp. 364�370.

Kohonen, Teuvo (1990): �The Self-Organizing Map.� In: Proceedings of the IEEE, 78(9),
pp. 1464�1480.

Kohonen, Teuvo (2001): Self-Organizing Maps, vol. 30 of Springer Series in Information
Sciences. Heidelberg: Springer.

Kohonen, Teuvo (2005): �The Self-Organizing Map (SOM).� URL http://www.cis.hut.

fi/somtoolbox/theory/somalgorithm.shtml.

Kohonen, Teuvo and Timo Honkela (2007): �Kohonen network.� URL http://www.

scholarpedia.org/article/Kohonen_network.

Lazar, Jonathan; Jinjuan Heidi Feng; and Harry Hochheiser (2017): Research methods in
human-computer interaction. Morgan Kaufmann.

Lerch, Alexander (2012): An introduction to audio content analysis: Applications in signal
processing and music informatics. Wiley-IEEE Press.

Lykartsis, Athanasios (2014): Evaluation of accent-based rhythmic descriptors for genre
classi�cation of musical signals. Master's thesis, Master's thesis, Audio Communication
Group, Technische Universität Berlin

Maaten, Laurens van der and Geo�rey Hinton (2008): �Visualizing data using t-SNE.� In:
Journal of machine learning research, 9(Nov), pp. 2579�2605.

Mathieu, Benoit; Slim Essid; Thomas Fillon; Jacques Prado; and Gaël Richard (2010):
�YAAFE, an Easy to Use and E�cient Audio Feature Extraction Software.� In: ISMIR.
pp. 441�446.

McDonald, Kyle and Manny Tan (2019): The In�nite Drum Machine. Online. URL
https://experiments.withgoogle.com/drum-machine. Access 7.2.2019.

Merenyi, Erzsbet; Abha Jain; and Thomas Villmann (2007): �Explicit magni�cation con-
trol of self-organizing maps for �forbidden� data.� In: IEEE Transactions on Neural
Networks, 18(3), pp. 786�797.

50

http://www.icedaudio.com/
http://www.cis.hut.fi/somtoolbox/theory/somalgorithm.shtml
http://www.cis.hut.fi/somtoolbox/theory/somalgorithm.shtml
http://www.scholarpedia.org/article/Kohonen_network
http://www.scholarpedia.org/article/Kohonen_network
https://experiments.withgoogle.com/drum-machine

References

Mo�at, David; David Ronan; Joshua D Reiss; et al. (2015): �An evaluation of audio
feature extraction toolboxes.� In: 18th International Conference on Digital Audio E�ects
(DAFx).

Moore, Brian CJ; Brian R Glasberg; and Thomas Baer (1997): �A model for the prediction
of thresholds, loudness, and partial loudness.� In: Journal of the Audio Engineering
Society, 45(4), pp. 224�240.

Nielsen, Bjørn Næsby (2019): Sononym. Software. URL https://www.sononym.net/.
Access 7.2.2019.

Oppenheim, Alan V and Ronald W Schafer (2014): Discrete-time signal processing. Pear-
son Education.

Pampalk, Elias; Peter Hlavac; and Perfecto Herrera (2004): �Hierarchical organization and
visualization of drum sample libraries.� In: 7th International Conference on Digital
Audio E�ects (DAFx). pp. 378�383.

Peeters, Geo�roy (2004): A large set of audio features for sound description (similarity
and classi�cation) in the CUIDADO project. Tech. rep., IRCAM.

Rawlinson, Hugh; Nevo Segal; and Jakub Fiala (2015): �Meyda: an audio feature extrac-
tion library for the web audio api.� In: The 1st Web Audio Conference (WAC). Paris,
Fr.

Rawlinson, Hugh; Nevo Segal; and Jakub Fiala (2019a): �Meyda: Audio feature extraction
for JavaScript.� URL https://meyda.js.org/audio-features.

Rawlinson, Hugh; Nevo Segal; and Jakub Fiala (2019b): �Meyda: Audio feature extraction
for JavaScript.� URL https://github.com/meyda/meyda.

Saldaña, Johnny (2015): The coding manual for qualitative researchers. Sage.

Schnell, Norbert; et al. (2009): �MuBu and friends�assembling tools for content based
real-time interactive audio processing in Max/MSP.� In: ICMC.

Schnell, Norbert; et al. (2019a): MuBu for Max - A toolbox for Multimodal Analysis of
Sound and Motion, Interactive Sound Synthesis and Machine Learning. Online. URL
http://ismm.ircam.fr/mubu/. Access 7.2.2019.

Schnell, Norbert; et al. (2019b): MuBu for Max - A toolbox for Multimodal Analysis of
Sound and Motion, Interactive Sound Synthesis and Machine Learning. Online. URL
http://forumnet.ircam.fr/product/mubu-en/. Access 7.2.2019.

Schwartz, Barry (2004): The paradox of choice: Why more is less, vol. 6. HarperCollins
New York.

Schwarz, Diemo; Grégory Beller; Bruno Verbrugghe; and Sam Britton (2006): �Real-time
corpus-based concatenative synthesis with catart.� In: 9th International Conference on
Digital Audio E�ects (DAFx). pp. 279�282.

51

https://www.sononym.net/
https://meyda.js.org/audio-features
https://github.com/meyda/meyda
http://ismm.ircam.fr/mubu/
http://forumnet.ircam.fr/product/mubu-en/

References

Shier, Jordie; Kirk McNally; and George Tzanetakis (2017): �Analysis of Drum Machine
Kick and Snare Sounds.� In: Audio Engineering Society Convention 143. Audio Engi-
neering Society.

Torvalds, Linus and Junio Hamano (2019): Git. Software. URL https://git-scm.com/.
Access 7.2.2019.

TU Berlin, Ethik-Kommission (2019): Ethik-Kommission. URL https://www.ipa.

tu-berlin.de/menue/einrichtungen/gremienkommissionen/ethik_kommission/.

Vagias, Wade M (2006): �Likert-type Scale Response Anchors. Clemson International In-
stitute for Tourism.� In: & Research Development, Department of Parks, Recreation and
Tourism Management, Clemson University.

Vesanto, Juha; Johan Himberg; Esa Alhoniemi; and Juha Parhankangas (2000): �SOM
toolbox for Matlab 5.� In: Helsinki University of Technology, Finland, p. 109.

World Wide Web Consortium (W3C) (2019): Web Audio API. Online. URL https:

//www.w3.org/TR/webaudio/. Access 7.2.2019.

Yin, Hujun (2007): �Nonlinear dimensionality reduction and data visualization: a review.�
In: International Journal of Automation and Computing, 4(3), pp. 294�303.

Zwicker, Eberhard (1961): �Subdivision of the audible frequency range into critical bands
(Frequenzgruppen).� In: The Journal of the Acoustical Society of America, 33(2), pp.
248�248.

52

https://git-scm.com/
https://www.ipa.tu-berlin.de/menue/einrichtungen/gremienkommissionen/ethik_kommission/
https://www.ipa.tu-berlin.de/menue/einrichtungen/gremienkommissionen/ethik_kommission/
https://www.w3.org/TR/webaudio/
https://www.w3.org/TR/webaudio/

Appendices

All supplementary materials listed here are included with the digital submission of this
work.

A Source Code

The LATEX sources for this work are located in the directory tex/.

The source code for the applications that were developed for this thesis can be found in
the following directories:

mubu-SOM-js: dev/mubu-som-js/

SOM Browser : dev/som-browser/

B Sample Library

The Drum Essentials sample library that was used as a sound corpus can be found in
evaluation/DrumEssentials/.

C Evaluation Map Data

All maps used for the results presented in Section 5 can be found in evaluation/eval_maps/.

D Interview Data

The recorded interviews, their transcriptions and a spreadsheet with the codi�ed data are
located in evaluation/interviews/.

E MATLAB Figures

The MATLAB scripts to create the �gures shown in Section 5 can be found in
evaluation/matlab/.

I

Acronyms

ACA Audio Content Analysis.

API Application Programming Interface.

BDH Bauer-Der-Herrmann Algorithm.

BMU Best Matching Unit.

DAW Digital Audio Workstation.

FFT Fast Fourier Transform.

FNP Forced Node Population.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HCI Human-Computer Interaction.

IRCAM Institut de recherche et coordination acoustique/musique.

MFCC Mel Frequency Cepstral Coe�cient.

MIR Music Information Retrieval.

ML Machine Learning.

NaN Not a Number.

OS Operating System.

PCA Principal Component Analysis.

RAM Random-Access Memory.

SOM Self-Organizing Map.

TU Berlin Technische Universität Berlin.

VST Virtual Studio Technology.

II

List of Figures

1 mubu-SOM-js . 10
2 CataRT : with and without SOM . 11
3 CataRT : SOM with added noise . 11
4 SOM Browser . 15
5 SOM Browser without audio �les loaded . 16
6 SOM Browser : Mock-up outlining system states 18
7 Comparison of maps with (7b) and without (7a) FNP 23
8 E�ects of Training Duration on SOM Metrics 32
9 E�ects of αinitial on SOM Metrics . 32
10 E�ects of rstart on SOM Metrics . 33
11 E�ects of rend on SOM Metrics . 34
12 Comparison of SOM learning rate types . 34
13 BDH: E�ect of Magni�cation Control m . 35
14 Comparison of FNP in�uence on SOM . 36
15 SOM Browser : Visual In�uence of FNP . 36
16 Interview Ratings . 37
17 Established sample library work�ow . 40

III

List of Listings

1 dev/mubu-som-js/descriptor_som.js: createSOM() 13
2 dev/mubu-som-js/descriptor_som.js: training() 13
3 dev/mubu-som-js/descriptor_som.js: Neuron position updates 13
4 dev/mubu-som-js/descriptor_som.js: BMU identi�cation 14
5 dev/som-browser/src/components/App.js: handleAnalyzeClick() [ex-

cerpt] . 20
6 dev/som-browser/src/background/extractFeatures.js: Audio feature ex-

traction . 20
7 dev/som-browser/src/components/App.js: GUI Components 21
8 FNP implementation . 23

IV

List of Tables

1 mubu-SOM-js: Messages for algorithm control 12
2 Drum Essentials: Instrument category counts 25
3 Comparison of SOM Learning Rate Types 35
4 In�uence of FNP . 36
5 Established Sample Library Work�ow Description: Response Codes 38
6 Established Sample Library Work�ow Assessment: Response Codes 39
7 SOM Browser : Positive Responses . 41
8 SOM Browser : Negative Responses . 41
9 Work�ow Comparison: SOM Browser vs. Established Work�ow 42
10 SOM Browser : Feature Requests . 43

V

	1 Introduction
	1.1 Motivation and Problem Description
	1.2 Previous Work
	1.3 Aims and Objectives

	2 Background
	2.1 Audio Feature Extraction
	2.1.1 Audio Pre-Processing
	2.1.2 Time Domain Features
	2.1.3 Frequency Domain Features
	2.1.4 Perceptual Features

	2.2 Self-Organizing Map
	2.2.1 Algorithm Definition
	2.2.2 Node Initialization
	2.2.3 Input Data Scaling
	2.2.4 Alternative Learning Rate Factors

	3 Implementation
	3.1 Groundwork: CataRT Extension
	3.1.1 Functionality
	3.1.2 Code Overview

	3.2 SOM Browser
	3.2.1 Functionality
	3.2.2 Libraries and Frameworks Used
	3.2.3 Application Structure
	3.2.4 Background Processing
	3.2.5 User Interface Components
	3.2.6 Algorithm Extension: Forced Node Population

	4 Evaluation
	4.1 Sound Corpus Selection
	4.2 Metrics for SOM Analysis
	4.2.1 SOM-Induced Quantization
	4.2.2 Vector-Node Count
	4.2.3 Map Emptiness
	4.2.4 Influence of Forced Node Population

	4.3 Semi-structured User Interviews
	4.3.1 Motivation to Conduct Interviews
	4.3.2 Interview Subject Selection
	4.3.3 Informed Consent Form
	4.3.4 Test Subject Code Design
	4.3.5 Interview Structure
	4.3.6 Question Design
	4.3.7 Selection of Ratings Scales
	4.3.8 Questions Used

	5 Results
	5.1 SOM Metrics
	5.1.1 Effects of Training Duration
	5.1.2 Effects of initial
	5.1.3 Effects of Radius Size
	5.1.4 Learning Rate Type Comparison
	5.1.5 Final Map and Influence of fnp

	5.2 Interview Results
	5.2.1 Established Workflow Responses
	5.2.2 SOM Browser Responses
	5.2.3 Workflow Comparison: SOM Browser vs. Established Workflow
	5.2.4 SOM Browser: Feature Requests

	6 Discussion
	6.1 Interpreting the Results
	6.2 Strengths, Weaknesses and Limitations
	6.3 Outlook
	6.4 Conclusion

	7 References
	Appendices
	A Source Code
	B Sample Library
	C Evaluation Map Data
	D Interview Data
	E MATLAB Figures

	Acronyms
	List of Figures
	List of Listings
	List of Tables

